Induction of Mad expression leads to augmentation of insulin gene transcription.

Biochem Biophys Res Commun

Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Boston, MA 02215, USA.

Published: April 2003

Insulin gene transcription is critical for the maintenance of pancreatic beta-cell differentiation and insulin production. In this study, we found that the basic helix-loop-helix transcription factor Mad, which usually acts as a repressor to c-Myc, enhances insulin gene transcription. In isolated rat islets adenoviral overexpression of Mad augmented insulin mRNA expression and insulin protein content, as well as glucokinase and GLUT2 mRNA expression. Also, Mad overexpression upregulated insulin promoter activity in beta-cell-derived cell lines, MIN6 and betaTC1, as well as in non-insulin producing liver cell line, HepG2. Mad overexpression in rat islets enhanced PDX-1 expression and its DNA binding activity. We found that Mad mediated increased PDX-1 expression by an E-box dependent transcriptional regulation of the PDX-1 gene. That the effects of Mad on insulin expression were mediated through PDX-1 was further substantiated by studies showing inhibition of insulin promoter activation by Mad in the presence of mutated PDX-1 binding site. Although Mad functions as a negative regulatory factor for multiple target genes, these studies establish the fact that Mad can also function as a positive regulatory factor for insulin gene transcription. Such regulation of insulin expression by Mad with modulation of PDX-1 expression and DNA binding activity could offer useful therapeutic and/or experimental tools to promote insulin production in appropriate cell types.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-291x(03)00493-5DOI Listing

Publication Analysis

Top Keywords

insulin gene
16
gene transcription
16
insulin
12
pdx-1 expression
12
mad
10
expression
8
insulin production
8
rat islets
8
mrna expression
8
expression mad
8

Similar Publications

Background: is a differentially expressed gene (DEG) between M1 and M2 macrophages. This study explained why it causes opposite effects in different circumstances.

Methods: Gene expression profiles of various cell subsets were compared by mining a public database.

View Article and Find Full Text PDF

Background And Aims: People who have diabetes mellitus (DM) are thought to be more susceptible to pulmonary tuberculosis (PTB). Several published comparative investigations have reported that chest x-ray images from PTB with DM are considered atypical due to their frequent involvement of the lower lung field (LLF). This study aimed to investigate the frequency of lower lung field tuberculosis (LLF-TB) in DM and the risk factor of DM for the development of TB.

View Article and Find Full Text PDF

Sulforaphane acutely activates multiple starvation response pathways.

Front Nutr

January 2025

Aging and Metabolism Research Program, Oklahoma City, OK, United States.

Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that has demonstrated anti-cancer, anti-microbial and anti-oxidant properties. SFN ameliorates various disease models in rodents (e.g.

View Article and Find Full Text PDF

Insulin Resistance Mediates the Association Between Vitamin D and Non-Alcoholic Fatty Liver Disease.

Int J Prev Med

December 2024

Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Affiliated Hospital of Southeast University, Xuzhou Clinical School of Nanjing Medical University, Xuzhou, Jiangsu, China.

Background: Vitamin D (VD) deficiency and insulin resistance (IR) increase the risk of non-alcoholic fatty liver disease (NAFLD), but few studies have explored the potential mechanisms by which IR mediates the association between VD and the pathogenesis of NAFLD at the genetic level using publicly available databases.

Methods: This is a cross-sectional study, and we utilized the National Health and Nutrition Examination Survey (NHANES) dataset, as well as data from GSE200765 obtained from the Gene Expression Omnibus (GEO) website. A total of 723 individuals who had completed liver ultrasound examination and the detection of VD levels were included in the final analysis.

View Article and Find Full Text PDF

Insulin Therapy for Acute Pancreatitis in a Patient With Lipase Maturation Factor 1 Mutation: A Case Report.

J Community Hosp Intern Med Perspect

January 2025

Department of Medicine, Division of General Internal Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.

Acute pancreatitis is a frequent cause of hospital admission, managed with intravenous (IV) fluids, analgesia, and oral feeding when tolerated. In patients with hypertriglyceridemia-induced pancreatitis, insulin and other therapies may be necessary for disease resolution. We present a case of a patient with severe acute pancreatitis and euglycemic diabetic ketoacidosis (DKA) with known lipase maturation factor 1 (LMF1) gene mutations, which can impact insulin efficacy on triglyceride metabolism through altered lipoprotein lipase activity, successfully treated with intravenous insulin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!