A conserved family of calcineurin-regulating proteins whose members have been implicated in several disease models such as Down syndrome, Alzheimer's disease, and cardiac hypertrophy has been identified in several organisms including yeast, mice, and humans. We have characterized Caenorhabditis elegans rcn-1, which belongs to this family of calcineurin regulators, and shows approximately 40% identity with the human homologue DSCR-1. rcn-1 is expressed in hypodermal cells, nerve cords and various neurons, vulva epithelial and muscle cells, marginal cells of the pharynx, and structures of the male tail. rcn-1 expression is upregulated by calcineurin activity. RCN-1 binds to calcineurin A from C.elegans lysate in a calcium-dependent manner, and inhibits bovine calcineurin phosphatase activity dose-dependently. In addition, overexpression of RCN-1 results in calcineurin-deficient phenotypes such as small body size, cuticle defects, fertility defects, slow growth, and serotonin-resistant egg-laying defects. Moreover, phenotypes observed in gain-of-function calcineurin mutant animals were restored to normal by RCN-1 overexpression. These results demonstrate an effective and specific inhibition of calcineurin in vitro as well as in vivo by RCN-1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0022-2836(03)00237-7DOI Listing

Publication Analysis

Top Keywords

caenorhabditis elegans
8
rcn-1
8
calcineurin
7
elegans homologue
4
homologue syndrome
4
syndrome critical
4
critical region
4
region rcn-1
4
rcn-1 inhibits
4
inhibits multiple
4

Similar Publications

Cellular systems that govern protein folding rely on a delicate balance of functional redundancy and diversification to maintain protein homeostasis (proteostasis). Here, we use to demonstrate how both overlapping and divergent activities of two homologous endoplasmic reticulum (ER)-resident HSP70 family chaperones, HSP-3 and HSP-4, orchestrate ER proteostasis and contribute to organismal physiology. We identify tissue-, age-, and stress-specific protein expression patterns and find both redundant and distinct functions for HSP-3 and HSP-4 in ER stress resistance, reproduction, and body size regulation.

View Article and Find Full Text PDF

Autophagy is an essential cellular process which functions to maintain homeostasis in response to stressors such as starvation or infection. Here, we report that a subset of autophagy factors including ATG-3 play an antiviral role in Orsay virus infection of . Orsay virus infection does not modulate autophagic flux, and re-feeding after starvation limits Orsay virus infection and blocks autophagic flux, suggesting that the role of ATG-3 in Orsay virus susceptibility is independent of its role in maintaining autophagic flux.

View Article and Find Full Text PDF

Few of the many chemicals that regulatory agencies are charged with assessing for risk have been carefully tested for developmental neurotoxicity (DNT). To speed up testing efforts, as well as to reduce the use of vertebrate animals, great effort is being devoted to alternate laboratory models for testing DNT. A major mechanism of DNT is altered neuronal architecture resulting from chemical exposure during neurodevelopment.

View Article and Find Full Text PDF

Integrated spaceflight transcriptomic analyses and simulated space experiments reveal key molecular features and functional changes driven by space stressors in space-flown C. elegans.

Life Sci Space Res (Amst)

February 2025

Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China.

The space environment presents unique stressors, such as microgravity and space radiation, which can induce molecular and physiological changes in living organisms. To identify key reproducible transcriptomic features and explore potential biological roles in space-flown C. elegans, we integrated transcriptomic data from C.

View Article and Find Full Text PDF

Burkholderia contaminans SK875, a member of Burkholderia cepacia complex (Bcc), are known to cause lung infections in cystic fibrosis patients. To gain deeper insights into its quorum sensing (QS)-mediated pathogenicity, we employed a transposon (Tn) insertion-based random mutagenesis approach. A Tn mutant library comprising of 15,000 transconjugants was generated through conjugation between wild-type (WT) recipient B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!