Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An automated method for producing multivariate optical element (MOE) interference filters that are robust to errors in the reactive magnetron sputtering process is described. Reactive magnetron sputtering produces films of excellent thickness and uniformity. However, small changes in the thickness of individual layers can have severe adverse effects on the predictive ability of the MOE. Adaptive reoptimization of the filter design during the deposition process can maintain the predictive ability of the final filter by changing the thickness of the undeposited layers to compensate for the errors in deposition. The merit function used, the standard error of calibration, is fundamentally different from the standard spectrum matching. This new merit function allows large changes in the transmission spectrum of the filter to maintain performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.42.001833 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!