The kinetic rate constants for interaction of (-)-eseroline-(3aS-cis)-1,2,3,3a,8,8a-hexahydro-1,3a,8-trimethylpyrrolo-[2,3-b]indol-5-ol with electric eel acetylcholinesterase (EC 3.1.1.7, acetylcholine acetylhydrolase) were measured at a low substrate concentration according to a transient kinetic approach by using a rapid experimental technique. The measurements were carried out on a stopped-flow apparatus where pre-incubated samples of enzyme with various inhibitor concentrations were diluted with a buffer solution containing the substrate. The experimental data in the form of sigmoid-shaped progress curves were analysed by applying an explicit progress curve equation that described the time dependence of product released during the reaction. The kinetic parameters were evaluated by non-linear regression treatment and the values of the corresponding constants showed approximately the equal affinities of eseroline and eserine (cf. Stojan, J. and Zorko, M. (1997) Biochim. Biophys. Acta, 1337, 75-84.) for binding into the active centre of the enzyme. On the other hand, the kinetic rates for association and dissociation of eseroline were two grades of magnitude higher than those of eserine. The explanation appears to be a substantionally impaired gliding of eserine into the active site gorge by the great mobility of the carbamoyl tail as well as by its numerous possible interactions with the residues lining the gorge. Additionally, a study of the dependence of the transition phase information on the inhibitor concentration was carried out using our experimental data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/1475636021000013920 | DOI Listing |
Soft Matter
January 2025
Division of Physical Chemistry, Department of Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden.
Attempts to use colloid science concepts to better understand the dynamic properties of concentrated or crowded protein solutions are challenging due to the fact that globular proteins generally have heterogeneous surfaces that result in anisotropic or patchy contributions to their interaction potential. This is particularly difficult when targeting non-equilibrium transitions such as glass and gel formation in concentrated protein solutions. Here we report a systematic study of the reduced zero shear viscosity of the globular protein -crystallin, an eye lens protein that plays a vital role in vision-related phenomena such as cataract formation or presbyopia, and compare the results to the existing structural and dynamic data.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
The precise identification of various toxic gases is important to prevent health and environmental hazards using cost-effective, efficient, metal oxide-based chemiresistive sensing methods. This study explores the sensing properties of a chemiresistive sensor based on a ZnSnO-SnO microcomposite for detecting -butanol vapours. The microcomposite, enriched with oxygen vacancies, was thoroughly characterized, confirming its structure, crystallinity, morphology and elemental composition.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
Transcription activators are said to stimulate gene expression by 'recruiting' coactivators, yet this vague term fits multiple kinetic models. To directly analyze the dynamics of activator-coactivator interactions, single-molecule microscopy was used to image promoter DNA, a transcription activator and the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex within yeast nuclear extract. SAGA readily but transiently binds nucleosome-free DNA without an activator, while chromatin association occurs primarily when an activator is present.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Single Molecule Analysis Group, Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, United States.
Single-molecule fluorescence resonance energy transfer (smFRET) has emerged as a pivotal technique for probing biomolecular dynamics over time at nanometer scales. Quantitative analyses of smFRET time traces remain challenging due to confounding factors such as low signal-to-noise ratios, photophysical effects such as bleaching and blinking, and the complexity of modeling the underlying biomolecular states and kinetics. The dynamic distance information shaping the smFRET trace powerfully uncovers even transient conformational changes in single biomolecules both at or far from equilibrium, relying on trace idealization to identify specific interconverting states.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States.
Dimension-engineered synthesis of atomically thin II-VI nanoplatelets (NPLs) remains an open challenge. While CdSe NPLs have been made with confinement ranging from 2 to 11 monolayers (ML), CdTe NPLs have been significantly more challenging to synthesize and separate. Here we provide detailed mechanistic insight into the layer-by-layer growth kinetics of the CdTe NPLs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!