Cardiovascular and renal phenotyping of genetically modified mice: a challenge for traditional physiology.

Clin Exp Pharmacol Physiol

Department of Physiology, Institute of Physiology and Pharmacology, Göteborg University, Sweden.

Published: April 2003

1. The advent of techniques to genetically modify experimental animals and produce directed mutations in both a conditional and tissue-specific manner has dramatically opened up new fields for physiologists in cardiovascular and renal research. 2. A consequence of altering the genetic background of mice is the difficulty in predicting the phenotypic outcome of the genetic mutation. We therefore suggest that physiologists may need to change their current experimental paradigms to face this new era. Hence, our aim is to propose a complementary research philosophy for physiologists working in the post-genomic era. That is, instead of using strictly hypothesis-driven research philosophies, one will have to perform screening studies of mutant mice, within a field of interest, to find valuable phenotypes. Once a relevant phenotype is found, in-depth studies of the underlying mechanisms should be performed. These follow-up studies should be performed using a traditional hypothesis-driven research philosophy. 3. The rapidly increasing availability of mutated mouse models of human disease also necessitates the development of techniques to characterize these various mouse phenotypes. In particular, the miniaturization and refinement of techniques currently used to study the renal and cardiovascular system in larger animals will be discussed in the present review. Hence, we aim to outline what techniques are currently available and should be present in a laboratory to screen and study renal and cardiovascular phenotypes in genetically modified mice, with particular emphasis on methodologies used in the intact, conscious animal.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1440-1681.2003.03818.xDOI Listing

Publication Analysis

Top Keywords

cardiovascular renal
8
genetically modified
8
modified mice
8
techniques currently
8
study renal
8
renal cardiovascular
8
cardiovascular
4
renal phenotyping
4
phenotyping genetically
4
mice
4

Similar Publications

Oxidative stress-associated proximal tubular cells (PTCs) damage is an important pathogenesis of hypertensive renal injury. We previously reported the protective effect of VEGFR3 in salt-sensitive hypertension. However, the specific mechanism underlying the role of VEGFR3 in kidney during the overactivation of the renin-angiotensin-aldosterone system remains unclear.

View Article and Find Full Text PDF

Background: Recent studies revealed an association between small kidney volume and progression of kidney dysfunction in particular settings such as kidney transplantation and transcatheter aortic valve implantation. We hypothesized that kidney volume was associated with the incidence of kidney-related adverse outcomes such as worsening renal function (WRF) in patients with acute heart failure (AHF).

Methods: This study was a single-center retrospective cohort study.

View Article and Find Full Text PDF

Renal ischaemia due to renal artery stenosis produces two differing responses - a juxtaglomerular hypertensive response and cortical renal dysfunction. The reversibility of renal impairment is not predictable, and thus renal revascularisation is controversial. This study aims to test the hypothesis that the hypertensive response to renal ischaemia reflects viable renal parenchyma, and thus could be used to predict the recovery in renal function.

View Article and Find Full Text PDF

Cota is a lipidated dual GLP-1 and Glucagon receptor agonist that was investigated for the treatment of various metabolic diseases, it is designed for once daily subcutaneous administration. Invasive daily injections often result in poor patient compliance with chronic disease, and here, we demonstrate an innovative strategy of encapsulating reversible cota self-assembled fibers within an in-situ forming depot of low molecular weight poly(lactic-co-glycolic) acid (LWPLGA) for sustained delivery GLP-1 and Glucagon receptor agonist with controlled burst release. This could be a suitable alternative to other sustained delivery strategies for fibrillating peptides.

View Article and Find Full Text PDF

European Society of Cardiology quality indicators for the management of acute coronary syndrome.

Eur Heart J Acute Cardiovasc Care

January 2025

Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.

Background: Closing the evidence-practice gap for the treatment of acute coronary syndrome (ACS) is central to improving quality of care. Under the European Society of Cardiology (ESC) framework, we aimed to develop updated quality indicators (QIs) for the evaluation of quality of care and outcomes for patients with ACS.

Methods: A Working Group of experts including members of the ESC Clinical Practice Guidelines Task Force for ACS, Acute CardioVascular Care Association and European Association of Percutaneous Cardiovascular Interventions followed the ESC methodology for QI development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!