Purpose: 4'-Thio-beta -d-arabinofuranosylcytosine (4'-thio-ara-C), which has shown significant cytotoxicity against a panel of human tumor lines, was evaluated for antitumor activity against a spectrum of human tumor systems in mice.
Methods: Antitumor activity was evaluated in 15 subcutaneously implanted human tumor xenografts. 4'-Thio-ara-C was administered intraperitoneally using either q1dx9 (daily treatment for nine consecutive days) or q4hx3/q1dx9 (three treatments each day separated by 4-h intervals for nine consecutive days).
Results: 4'-Thio-ara-C exhibited an excellent spectrum of activity. Treatment with the compound was curative against HCT-116 colon, SW-620 colon, NCI-H23 NSCL, and CAKI-1 renal tumors and resulted in partial/complete regressions in the DLD-1 colon, NCI-H522 NSCL, DU-145 prostate, and PANC-1 pancreatic tumor models. Tumor stasis was noted for HT29 colon and NCI-H460 NSCL tumors. Tumor inhibition was observed for A549 NSCL, PC-3 prostate, LNCAP prostate, and MDA-MB-435 breast tumors. Of the 15 tumors examined, only CFPAC-1 pancreatic was unresponsive to the compound. In contrast, 1-beta -d-arabinofuranosylcytosine was minimally active at best against CAKI-1 renal, HCT-116 colon, NCI-H460 NSCL, and SW-620 colon tumors. Schedule- and route-dependency studies were conducted using the NCI-H460 NSCL tumor. The activity of 4'-thio-ara-C was independent of schedule when comparing q2dx5 (every other day for five treatments), q1dx9, and q4hx3/q1dx9 treatment schedules. 4'-Thio-ara-C was equally effective by the intravenous and intraperitoneal routes of administration, with the oral route being less efficacious.
Conclusions: On the basis of these results, 4'-thio-ara-C appears to have a profile distinct from other nucleoside antitumor agents and is being advanced to clinical trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00280-003-0589-9 | DOI Listing |
J Med Chem
January 2025
State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211100, P. R. China.
Molecular glue degraders induce "undruggable" protein degradation by a proximity-induced effect. Inspired by the clinical success of immunomodulatory drugs, we aimed to design novel molecular glue degraders targeting GSPT1. Here, we report the design of a series of GSPT1 molecular glue degraders.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
Tumor-associated macrophages (TAMs) are commonly considered accomplices in tumorigenesis and tumor development. However, the precise mechanism by which tumor cells prompt TAMs to aid in evading immune surveillance remains to be further investigated. Here, it is elucidated that tumor-secreted galectin-1 (Gal1) conferred immunosuppressive properties to TAMs.
View Article and Find Full Text PDFFEBS J
January 2025
Department of Orthopedics, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Osteosarcoma, a malignant bone tumor that occurs in adolescents, proliferates and is prone to pulmonary metastasis. Osteosarcoma is characterized by high genotypic heterogeneity, making it difficult to identify reliable anti-osteosarcoma targets. The genotype of osteosarcoma may be highly dynamic, but its high dependence on energy remains constant.
View Article and Find Full Text PDFCell Biochem Funct
January 2025
Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India.
The biosynthesis of silver nanoparticles (AgNPs) using cyanobacteria has gained significant attention due to its cost-effective and eco-friendly advantages in green synthesis. Additionally, biogenic AgNPs show great potential for biological applications, particularly in combating infections caused by drug-resistant bacteria and fungi. This study synthesized using the cyanobacterium Oscillatoria salina (Os-AgNPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!