Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: We evaluated the use of radiolabeled 4-iodo-L-meta-tyrosine as an amino acid transport marker. The pharmacologic features of this compound, particularly the biodistribution and excretion, were examined by conducting in vivo and in vitro studies using 4-(125)I-iodo-L-meta-tyrosine (4-(125)I-mTyr). Results obtained for L-(14)C-Tyr and 3-(125)I-iodo-alpha-methyl-L-tyrosine ((125)I-IMT) were used for comparison.
Methods: In vivo biodistribution studies of 4-(125)I-mTyr were performed in male ddY mice. Urinary excretion of 4-(125)I-mTyr and (125)I-IMT with administration of probenecid was studied. Local distribution of 4-(125)I-mTyr and (125)I-IMT in kidney was visualized by autoradiography. We performed metabolite analysis of 4-(125)I-mTyr in mice. For in vitro studies, reabsorption mechanisms of 4-(125)I-mTyr were compared with those of (125)I-IMT and the parent L-(14)C-Tyr using superconfluent monolayers of the porcine kidney epithelial cell line LLC-PK(1) in medium containing inhibitor (L-Tyr, D-Tyr, and 2,4-dinitrophenol), in Na(+)-free medium, and at 4 degrees C.
Results: 4-(125)I-mTyr demonstrated high accumulation in the pancreas and kidney and comparable brain uptake to that of (125)I-IMT. Blood clearance of 4-(125)I-mTyr was faster than that of (125)I-IMT. Three hours after administration, >70% of 4-(125)I-mTyr was excreted via the urine, whereas <5% was found in the feces. Renal autoradiography revealed moderate accumulation of 4-(125)I-mTyr and high accumulation of (125)I-IMT in the renal cortex. Probenecid further reduced accumulation of 4-(125)I-mTyr and (125)I-IMT in the kidney as well as urinary excretion. At 30 min after tracer injection, intact free 4-(125)I-mTyr accounted for >98.1% of the total present in kidney and >96.3% in urine. Protein incorporation was not observed. Uptake of 4-(125)I-mTyr into LLC-PK(1) cell monolayers was remarkably reduced by 5 mmol/L L-Tyr (4.6%) and incubation at 4 degrees C (15.6%) but was reduced by 5 mmol/L D-Tyr (50.0%). L-(14)C-Tyr and (125)I-IMT showed similar results; however, uptake of (125)I-IMT was enhanced by 0.1 mmol/L 2,4-dinitrophenol (165.1%), an inhibitor of generation of energy-rich phosphates.
Conclusion: The artificial amino acid 4-(125)I-mTyr demonstrated high metabolic stability, rapid blood clearance, rapid urinary excretion, and similar biodistribution to other radiolabeled L-Tyr analogs. 4-(125)I-mTyr can be a competitive substrate of L-Tyr reabsorption. However, 4-(125)I-mTyr demonstrates different pharmacologic features than those of (125)I-IMT, particularly in renal handling. 4-(125)I-mTyr may potentially be applied as a new amino acid transport marker.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!