Gender-dependent modulation of alpha 1-adrenergic responses in rat mesenteric arteries.

Am J Physiol Heart Circ Physiol

Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA.

Published: May 2003

The purpose of this study was to test the hypothesis that pathways modulating vasoconstriction in rat mesenteric resistance arteries are gender dependent. Net contractile responses to phenylephrine were significantly increased by endothelium disruption in arteries from males but not females. This gender-dependent effect was stimulus specific, because disruption of endothelium increased reactivity to serotonin comparably in arteries from both genders. Ovariectomy unmasked an increase in net alpha(1)-adrenergic contractile responsiveness after endothelium disruption, suggesting alpha(1)-adrenergic-stimulated production of endothelial vasodilators is suppressed in control females by gonadal sex steroids. Production of modulatory endothelium-derived vasodilators in males is balanced by production of vasoconstricting arachidonic acid metabolites. This was revealed by decreased alpha(1)-adrenergic contractile responses in arteries from males after pretreatment with indomethacin or the cyclooxygenase-1 selective inhibitor SC-560. The indomethacin-induced effect persisted after endothelium disruption, indicating smooth muscle as the source of cyclooxygenase-1-derived vasoconstrictors and was attenuated after orchiectomy. This study indicates gender differences in the expression of two pathways modulating alpha(1)-adrenergic sensitivity in mesenteric arteries: an endothelium-dependent vasodilator pathway and a balancing smooth muscle cyclooxygenase-1-dependent vasoconstrictor pathway. One consequence of these differences is that endothelial damage produces a selective increase in alpha(1)-adrenergic agonist reactivity in arteries from males.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00779.2002DOI Listing

Publication Analysis

Top Keywords

endothelium disruption
12
arteries males
12
rat mesenteric
8
mesenteric arteries
8
pathways modulating
8
contractile responses
8
alpha1-adrenergic contractile
8
smooth muscle
8
arteries
7
gender-dependent modulation
4

Similar Publications

Coronary artery lesions constitute a significant complication of Kawasaki disease (KD) and represents one of the primary etiologies of acquired cardiovascular disease in pediatric populations. In the present study, we observed a downregulation of MEF2C expression in the whole blood of KD patients and in human coronary artery endothelial cells (HCAECs) during the pathophysiological progression of KD. Furthermore, transcriptomic data analysis, in conjunction with observations from HCAECs stimulated with KD serum, indicates that the downregulation of MEF2C in KD is correlated with increased inflammatory levels and the activation of inflammatory pathways.

View Article and Find Full Text PDF

The vascular endothelium and its endothelial glycocalyx contribute to the protection of the endothelial cells from exposure to high levels of sodium and help these structures maintain normal function by regulating vascular permeability due to its buffering effect. The endothelial glycocalyx has negative surface charges that bind sodium and limit sodium entry into cells and the interstitial space. High sodium levels can disrupt this barrier and allow the movement of sodium into cells and extravascular fluid.

View Article and Find Full Text PDF

Dengue virus (DENV) poses a considerable threat to public health on a global scale, since about two-thirds of the world's population is currently at risk of contracting this arbovirus. Being transmitted by mosquitoes, this virus is associated with a range of illnesses and a small percentage of infected individuals might suffer from severe vascular leakage. This leakage leads to hypovolemic shock syndrome, generally known as dengue shock syndrome, organ failure, and bleeding complications.

View Article and Find Full Text PDF

Metastases are the leading cause of cancer-related deaths, and their origin is not fully elucidated. Recently, studies have shown that extracellular vesicles (EVs), particularly small extracellular vesicles (sEV), can disrupt the homeostasis of organs, promoting the development of a secondary tumor. However, the role of sEV in brain endothelium and their association with metastasis related to breast cancer is unknown.

View Article and Find Full Text PDF

Bisphenol S induced endothelial dysfunction via mitochondrial pathway in the vascular endothelial cells, and detoxification effect of albumin binding.

Chem Biol Interact

January 2025

College of Chemistry and Materials, Key Laboratory of Green Catalysis of Jiangxi Education Institutes, Jiangxi Normal University, Nanchang, 330022, China. Electronic address:

As a replacement of bisphenol A, bisphenol S (BPS) is commonly used in the wrappers and food containers of daily life. Epidemiological studies demonstrate a close link between BPS exposure and vascular diseases, where the biological activities of BPS remain scarcely known. Herein, the effects of BPS on endothelial function as well as the underlying mechanism were investigated in human umbilical vein endothelial cells (HUVECs) and mouse arteries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!