Objective: To investigate the potential effects of arsenic trioxide (As(2)O(3)) combined with 8-(4-chlorophenylthio) adenosine 3', 5'-cyclic monophosphate (8-CPT-cAMP) on the retinoic acid (RA)-resistant acute promyelocytic leukemia (APL) cells.
Methods: The RA resistant APL cell lines NB4-R1 and NB4-R2 were used as in vitro models. The effect of As(2)O(3) and/or 8-CPT-cAMP was evaluated according to cellular morphology, cell surface antigen and nitroblue-tetrazolium (NBT) assay. Meanwhile, immunofluorescence analysis and Western blot assay were used to detect the degradation of PML-RAR alpha fusion protein and the change of several key cell cycle regulatory proteins in these cells before and after the treatment.
Results: Low dose of As(2)O(3) (0.25 micromol/L) synergized with 8-CPT-cAMP (200 micromol/L) in inducing differentiation of NB4-R1 and NB4-R2 cells, while neither of these two drugs alone could induce differentiation of these cells. In addition, 8-CPT-cAMP was able to inhibit the cell growth by modulating the expression of some important cell cycle regulators and to facilitate the As(2)O(3)-mediated degradation of PML-RAR alpha fusion protein.
Conclusions: As(2)O(3) combined with 8-CPT-cAMP could induce differentiation of RA-resistant APL cells.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!