Objective: To study the specific protection of myeloid cells from chemotherapeutic agents and radiation.
Methods: The recombinant retroviral vectors containing MDR1 gene and MnSOD gene regulated by APN myeloid promoter were constructed and introduced into myeloblastic cell line KG1a and hepatoma cell line BEL7402. The resistance of the cells to antitumor drugs and radiation were analyzed by cell survival assay. In vivo, the murine bone marrow cells were isolated and infected by the retroviral particles, which were transplanted into recipient mouse treated with paclitaxel or X-ray. The murine white blood cell (WBC) was counted in order to assay the effects of MDR1 or MnSOD gene on hematopoiesis in the course of chemotherapy and radiotherapy.
Results: The resistance to chemotherapeutic agents such as cochicine, Vp-16, vincristine, doxorubcin and paclitaxel were elevated markedly by 10.6, 10.4, 11.2, 4.2 and 14.2 folds in KG1a cell line transduced with MDR1 gene. The resistance to radiation increased 3.7 folds at the dose of 10 Gy compared with parental cells in KGla cell line transduced with MnSOD gene derived by APN promoter. In contrast, the chemosensitivity and the radiosensitivity showed no significant change in BEL 7402 cell line transduced with MDR1 gene and MnSOD gene. In vivo, the WBC counts in the mouse introduced with MDR1 gene or MnSOD gene were higher than those in the control mouse (P < 0.01).
Conclusion: The expression of MDR1 gene and MnSOD gene regulated by APN myeloid promoter is effective on myelo-specific protection without enhancing the resistance of tumor cells in vitro. The hematopoiesis can be reconstituted in vivo during anticancer drug or radiation treatment. This study may provide experimental evidence and new clues for myeloprotection of cancer patients being treated with chemotherapy and/or radiotherapy.
Download full-text PDF |
Source |
---|
J Fungi (Basel)
November 2024
Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
The importance of manganese superoxide dismutase (Mn-SOD), an evolutionarily ancient metalloenzyme that maintains the integrity and function of mitochondria, was studied in oxidative stress-treated cultures. Deletion of the Mn-SOD gene () increased both the menadione sodium bisulfite (MSB)-elicited oxidative stress and the deferiprone (DFP)-induced iron limitation stress sensitivity of the strain. Moreover, DFP treatment enhanced the MSB sensitivity of both the gene deletion mutant and the reference strain.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
Colorectal cancer (CRC) is the third most prevalent cancer worldwide. While chemotherapy remains the standard treatment approach, natural products have emerged as a promising alternative. Among these, apigenin, a natural flavonoid, has garnered significant attention due to its pro-oxidant and antioxidant properties in various types of cancer.
View Article and Find Full Text PDFGeobiology
December 2024
Department of Microbiology, University of Kaiserslautern-Landau RPTU, Kaiserslautern, Germany.
The evolution of oxygenic photosynthesis during the Archean (4-2.5 Ga) required the presence of complementary reducing pathways to maintain the cellular redox balance. While the timing of the evolution of superoxide dismutases (SODs), enzymes that convert superoxide to hydrogen peroxide and O, within bacteria and archaea is not resolved, the first SODs appearing in cyanobacteria contained copper and zinc in the reaction center (CuZnSOD).
View Article and Find Full Text PDFAquat Toxicol
January 2025
The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China.
Both nanoplastic (NP) particles and arsenic (As) are widespread in aquatic environments and pose a combined risk of exposure to aquatic organisms. How the gut of aquatic organisms responds to combined risk of exposure is still unclear. In this study, zebrafish (Danio rerio) were subjected to three distinct As stress environments: only As group (10 μg/L), and As combined with different concentrations of polystyrene (PS) NPs (1 mg/L and 10 mg/L) groups for 21 days via semi-static waterborne exposure.
View Article and Find Full Text PDFMol Med
November 2024
Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!