Cationic lipid vectors for plasmid DNA delivery.

Curr Med Chem

Department of Pharmaceutics, University of Florida, Box 100494, Gainesville FL 32610, USA.

Published: July 2003

AI Article Synopsis

  • Successful gene therapy relies on effective gene transfer vectors, both viral and non-viral, with cationic lipids being a notable non-viral option due to their pharmaceutical-like properties and minimal immunogenicity.
  • Despite their advantages, cationic lipids face challenges such as toxicity and low transfection efficiency that hinder their use in clinical settings.
  • Recent research has focused on enhancing cationic lipids' effectiveness through structural optimization of DNA/liposome complexes and innovative design strategies, including the use of disulfide cationic lipids for plasmid DNA delivery.

Article Abstract

Successful gene therapy depends on efficient gene transfer vectors. Viral vectors and non-viral vectors have been investigated extensively. Cationic lipids are non-viral vectors, which resemble traditional pharmaceuticals, display little immunogenicity, and have no potential for viral infection. However, toxicity and low transfection efficiency are two barriers limiting the clinical applications of cationic lipids. Over the last decade, hundreds of cationic lipids have been synthesized to address these problems. In this brief review, we summarized recent research results concerning the structures of DNA/liposomes complexes, some important strategies used to design different classes of cationic lipids, and use of disulfide cationic lipids in plasmid DNA delivery.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929867033457412DOI Listing

Publication Analysis

Top Keywords

cationic lipids
20
plasmid dna
8
dna delivery
8
non-viral vectors
8
cationic
6
vectors
5
lipids
5
cationic lipid
4
lipid vectors
4
vectors plasmid
4

Similar Publications

Cholesterol-terminated cationic lipidated oligomers (CLOs) as a new class of antifungals.

J Mater Chem B

January 2025

Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.

Infections caused by fungal pathogens are a global health problem, and have created an urgent need for new antimicrobial strategies. This report details the synthesis of lipidated 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) oligomers an optimized Cu(0)-mediated reversible-deactivation radical polymerization (RDRP) approach. Cholesterol-Br was used as an initiator to synthesize a library of oligo-VDM (degree of polymerisation = 5, 10, 15, 20, and 25), with an α-terminal cholesterol group.

View Article and Find Full Text PDF

The insertion of β-amino acids and replacement of the amide bond with a urea bond in antimicrobial peptide sequences are promising approaches to enhance the antibacterial activity and improve proteolytic stability. Herein, we describe the synthesis, characterization, and antibacterial activity of short αβ cationic hybrid peptides LA-Orn-βAcc-PEA, ; LA-Lys-βAcc-PEA, ; and LA-Arg-βAcc-PEA, in which a C12 lipid chain is conjugated at the N terminus of peptide through urea bonds. Further, we evaluated all the peptides against both and methicillin-resistant (MRSA) and their multidrug resistant (MDR) clinical isolates.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is a health problem due to multi-drug resistance (MDR). Codelivery of multiple oncotherapy in one cargo as chimeric cancer therapy (CCT) is suggested as a solution for MDR. This study aims to engineer chitosan-coated nanostructure lipid carriers (NLCs) loaded with gefitinib (GF) and simvastatin (SV) as CCT for HCC.

View Article and Find Full Text PDF

This study successfully synthesised and characterised composites combining chitosan (CH), carboxymethyl cellulose (CMC), and various flavonoids (Fla). This innovative approach demonstrates the potential for developing functional materials with antioxidant and food preservation properties. The composites CH-Fla-CMC (1-5) was characterised using advanced techniques such as FT-IR, UV-Vis, XRD, SEM, TEM, and TGA, providing robust data on their structural, morphological, and thermal properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!