Our institution is currently engaged in ongoing genetic studies of familial Alzheimer's disease (AD), which include clinical ascertainment and brain autopsy of both affected and non-affected family members. Here we describe the analysis of 22 AD families, each with at least one family member with a postmortem diagnosis of dementia with Lewy bodies (DLB). For this study, 47 brains were examined according to NINCDS-Reagan Institute criteria for the diagnosis of AD. Lewy body pathology was evaluated with alpha-synuclein immunohistochemistry. Four families, with either one or two autopsies showing Lewy body pathology, demonstrated linkage to 12p. Five families had two or more autopsies with Lewy body pathology, but their linkage status was unknown. The remaining 13 families had one autopsy demonstrating Lewy bodies. These findings suggest that at least one pathological form of DLB may be familial. In some families, the pathological phenotype is identical in all examined affected family members; but in others, there may be several pathologies that coexist. Careful neuropathological examination of affected family members may prove critical for future genetic analysis of AD and DLB.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00401-003-0670-9DOI Listing

Publication Analysis

Top Keywords

lewy body
16
body pathology
16
family members
12
familial alzheimer's
8
alzheimer's disease
8
lewy bodies
8
families autopsies
8
lewy
6
families
5
pathology
4

Similar Publications

The largest risk factor for dementia is age. Heterochronic blood exchange studies have uncovered age-related blood factors that demonstrate 'pro-aging' or 'pro-youthful' effects on the mouse brain. The clinical relevance and combined effects of these factors for humans is unclear.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a multifactorial neurodegenerative disease that is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta and by the anomalous accumulation of α-synuclein aggregates into Lewy bodies and Lewy neurites. Research suggests 2 distinct subtypes of PD: the brain-first subtype if the pathology arises from the brain and then spreads to the peripheral nervous system (PNS) and the body-first subtype, where the pathological process begins in the PNS and then spreads to the central nervous system. This review primarily focuses on the body-first subtype.

View Article and Find Full Text PDF

Background: Patients with Parkinson's disease (PD) and atypical parkinsonian syndromes are at increased risk of falls and should be actively screened and treated for osteoporosis. In 2024, the Royal Australian College of General Practitioners (RACGP) revised their practice guidelines for diagnosing and managing osteoporosis in postmenopausal women and men aged over 50 years.

Objective: We conducted the first Australian study to audit these guidelines in patients with PD and atypical parkinsonian syndromes.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disorder that results from the progressive loss of neurons in the brain followed by symptoms such as slowness and rigidity in movement, sleep disorders, dementia and many more. The different mechanisms due to which the neuronal degeneration occurs have been discussed, such as mutation in PD related genes, formation of Lewy bodies, oxidation of dopamine. This review discusses current surgical treatment and gene therapies with novel developments proposed for PD.

View Article and Find Full Text PDF

Aggregation of microtubule-associated tau protein is a distinct hallmark of several neurodegenerative disorders such as Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and progressive supranuclear palsy (PSP). Tau oligomers are suggested to be the primary neurotoxic species that initiate aggregation and propagate prion-like structures. Furthermore, different diseases are shown to have distinct structural characteristics of aggregated tau, denoted as polymorphs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!