Both electrocardiographically (ECG) gated blood pool SPET (GBPS) and ECG-gated myocardial perfusion SPET (GSPET) are currently used for the measurement of global systolic left ventricular (LV) function. In this study, we aimed to compare the value of GSPET and GBPS for this purpose. The population included 65 patients who underwent rest thallium-201 GSPET imaging at 15 min after (201)Tl injection followed by planar (planar(RNA)) and GBPS equilibrium radionuclide angiography immediately after 4-h redistribution myocardial perfusion SPET imaging. Thirty-five patients also underwent LV conventional contrast angiography (X-rays). LV ejection fraction (EF) and LV volume [end-diastolic (EDV) and end-systolic (ESV) volumes] were calculated with GBPS and GSPET and compared with the gold standard methods (planar(RNA) LVEF and X-ray based calculation of LV volume). For both LVEF and LV volume, the inter-observer variability was lower with GBPS than with GSPET. GBPS LVEF was higher than planar(RNA) (P<0.01) and GSPET LVEF (P<0.01). Planar(RNA) LVEF showed a slightly better correlation with GBPS LVEF than with GSPET LVEF: r=0.87 and r=0.83 respectively. GSPET LV volume was lower than that obtained using X-rays and GBPS (P<0.01 for both). LV volume calculated using X-rays showed a slightly better correlation with GBPS LV volume than with GSPET LV volume: r=0.88 and r=0.83 respectively. On stepwise regression analysis, the accuracy of GSPET for the measurement of LVEF and LV volume was correlated with a number of factors, including planar(RNA) LVEF, signal to noise ratio, LV volume calculated using X-rays, summed rest score and acquisition scan distance (i.e. the radius of rotation). The accuracy of GBPS for the measurement of LVEF and LV volume was correlated only with the signal level, the signal to noise ratio and the acquisition scan distance. Both GSPET and GBPS provide reliable estimation of global systolic LV function. The better reliability of GBPS and in particular its lower sensitivity to different variables as compared with GSPET favours its use when precise assessment of global systolic LV function is clinically indicated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00259-003-1121-5 | DOI Listing |
J Physiol
January 2025
Center for Developmental Health, Oregon Health & Science University, Portland, OR, USA.
Robust preclinical models of asymmetric ventricular loading in late gestation reflecting conditions such as hypoplastic left heart syndrome are lacking. We characterized the morphometry and microvascular function of the hypoplastic left ventricle (LV) and remaining right ventricle (RV) in a sham-controlled late gestation fetal lamb model of impaired left ventricular inflow (ILVI). Singleton fetuses were instrumented at ∼120 days gestational age (dGA; term is ∼147 days) with vascular catheters, an aortic flow probe and a deflated left atrial balloon.
View Article and Find Full Text PDFCrit Care
January 2025
División de Terapia Intensiva, Hospital Juan A. Fernández, Buenos Aires, Argentina.
The advancements in cardiovascular imaging over the past two decades have been significant. The miniaturization of ultrasound devices has greatly contributed to their widespread adoption in operating rooms and intensive care units. The integration of AI-enabled tools has further transformed the field by simplifying echocardiographic evaluations and enhancing the reproducibility of hemodynamic measurements, even for less experienced operators.
View Article and Find Full Text PDFJ Nucl Med
January 2025
Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California;
Nuclear cardiology offers a diverse range of imaging tools that provide valuable insights into myocardial perfusion, inflammation, metabolism, neuroregulation, thrombosis, and microcalcification. These techniques are crucial not only for diagnosing and managing cardiovascular conditions but also for gaining pathophysiologic insights. Surrogate biomarkers in nuclear cardiology, represented by detectable imaging changes, correlate with disease processes or therapeutic responses and can serve as endpoints in clinical trials when they demonstrate a clear link with these processes.
View Article and Find Full Text PDFJ Interv Card Electrophysiol
January 2025
Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan.
Background: Non-response to cardiac resynchronization therapy (CRT) is an important issue in the treatment of heart failure with reduced ejection fraction (HFrEF) and non-left bundle branch block (LBBB). Electrocardiogram-gated myocardial perfusion single-photon emission computed tomography imaging (G-MPI SPECT) is typically used to assess left ventricular (LV) dyssynchrony. This study aimed to determine whether G-MPI parameters are associated with non-responsiveness to CRT.
View Article and Find Full Text PDFInt J Cardiol
December 2024
Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China. Electronic address:
Aims: Timely assessment of abnormal microvascular perfusion (MVP) may improve prognosis in patients with ST-segment elevation myocardial infarction (STEMI). This study aimed to determine the clinical implications of contrast-flow quantitative flow ratio (cQFR) in evaluating abnormal MVP and subsequent outcomes among STEMI patients after successful primary percutaneous coronary intervention (PPCI).
Methods: The study population consisted of 2 independent cohorts.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!