The Formin family protein, formin homolog overexpressed in spleen, interacts with the insulin-responsive aminopeptidase and profilin IIa.

Mol Endocrinol

Discovery Research Laboratories II, Pharmaceutical Research Division, Takeda Chemical Industries Co., Ltd., Tsukuba, Ibaraki 300-4293, Japan.

Published: July 2003

Insulin stimulates translocation of glucose transporter isoform type 4 (GLUT4) and the insulin-responsive aminopeptidase (IRAP) from an intracellular storage pool to the plasma membrane in muscle and fat cells. A role for the cytoskeleton in insulin action has been postulated, and the insulin signaling pathway has been well investigated; however, the molecular mechanism by which GLUT4/IRAP-containing vesicles move from an interior location to the cell surface in response to insulin is incompletely understood. Here, we have screened for IRAP-binding proteins using a yeast two-hybrid system and have found that the C-terminal domain of FHOS (formin homolog overexpressed in spleen) interacts with the N-terminal cytoplasmic domain of IRAP. FHOS is a member of the Formin/Diaphanous family of proteins that is expressed most abundantly in skeletal muscle. In addition, there are two novel types of FHOS transcripts generated by alternative mRNA splicing. FHOS78 has a 78-bp insertion and it is expressed mainly in skeletal muscle where it may be the most abundant isoform in humans. The ubiquitously expressed FHOS24 has a 24-bp insertion encoding an in-frame stop codon that results in a truncated polypeptide. It is known that some formin family proteins interact with the actin-binding profilin proteins. Both FHOS and FHOS78 bound to profilin IIa via their formin homology 1 domains, but neither bound profilin I or IIb. Overexpression of FHOS and FHOS78 resulted in enhanced insulin-stimulated glucose uptake in L6 cells to similar levels. However, overexpression of FHOS24, lacking the IRAP-binding domain, did not affect insulin-stimulated glucose uptake. These findings suggest that FHOS mediates an interaction between GLUT4/IRAP-containing vesicles and the cytoskeleton and may participate in exocytosis and/or retention of this membrane compartment.

Download full-text PDF

Source
http://dx.doi.org/10.1210/me.2003-0056DOI Listing

Publication Analysis

Top Keywords

formin family
8
formin homolog
8
homolog overexpressed
8
overexpressed spleen
8
spleen interacts
8
insulin-responsive aminopeptidase
8
profilin iia
8
glut4/irap-containing vesicles
8
family proteins
8
skeletal muscle
8

Similar Publications

Background: Dishevelled-associated activator of morphogenesis1 (DAAM1) is a member of the evolutionarily conserved Formin family and plays a significant role in the malignant progression of various human cancers. This study aims to explore the clinical and biological significance of DAAM1 in pancreatic cancer.

Methods: Multiple public datasets and an in-house cohort were utilized to assess the clinical relevance of DAAM1 in pancreatic cancer.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) driven by the mutation presents a formidable health challenge because of limited treatment options. MRTX1133 is a highly selective and first-in-class KRAS-G12D inhibitor under clinical development. Here, we report that the advanced glycosylation end product-specific receptor (AGER) plays a key role in mediating MRTX1133 resistance in PDAC cells.

View Article and Find Full Text PDF

Muscle development and maintenance is central to the normal functioning of animals. Muscle tissues exhibit high levels of activity and require the dynamic turnover of proteins. An actomyosin scaffold functions with additional proteins comprising the basic contractile subunit of striated muscle, known as the sarcomere.

View Article and Find Full Text PDF

As obligate parasites, viruses exploit host cell organelles and molecular components to complete their life cycle. Among which, viruses firstly hijack the cytoskeleton of host cells to ensure their efficiently cell entry and replication. Although formin family members play a key role in both microfilament and microtubule cytoskeletal remodeling, few studies addressed the detailed function and mechanism of formins in the process of viral infection.

View Article and Find Full Text PDF

To identify novel genes engaged in plant epidermal development, we characterized the phenotypic variability of rosette leaf epidermis of 310 sequenced Arabidopsis thaliana accessions, focusing on trichome shape and distribution, compositional characteristics of the trichome cell wall, and histologically detectable metal ion distribution. Some of these traits correlated with cLimate parameters of our accession's locations of origin, suggesting environmental selection. A novel metal deposition pattern in stomatal guard cells was observed in some accessions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!