Recent studies suggest that the skeletal muscle may be a significant site of IL-6 production in various conditions, including exercise, inflammation, hypoperfusion, denervation, and local muscle injury. The mediators and molecular mechanisms regulating muscle IL-6 production are poorly understood. We tested the hypothesis that IL-6 production in muscle cells is regulated by IL-1beta and that mitogen-activated protein (MAP) kinase signaling and NF-kappaB activation are involved in IL-1beta-induced IL-6 production. Cultured C2C12 cells, a mouse skeletal muscle cell line, were treated with different concentrations (0.1-2 ng/ml) of IL-1beta in the absence or presence of the p38 MAP kinase inhibitor SB-208350 or the p42/44 inhibitor PD-98059. Protein and gene expression of IL-6 were determined by ELISA and real-time PCR, respectively. NF-kappaB DNA binding activity was determined by electrophoretic mobility shift assay and by transfecting myocytes with a luciferase reporter plasmid containing a promoter construct with multiple repeats of NF-kappaB binding site. Treatment of myotubes with IL-1beta resulted in a dose- and time-dependent increase of IL-6 production accompanied by an approximately 25-fold increase in IL-6 mRNA levels. IL-1beta stimulated NF-kappaB DNA binding activity and gene activation. SB-208350 and PD-98059 inhibited the increase in IL-6 production induced by IL-1beta. The present results support the concept that skeletal muscle is an important site of IL-6 production. In addition, the results suggest the IL-1beta regulates muscle IL-6 production at least in part by activating the MAP kinase pathway and NF-kappaB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.00490.2002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!