Genetic variation in human Nod2 has been associated with susceptibility to Crohn's disease. The mouse Nod2 locus is located at chromosome 8 and composed of 12 exons, 11 of which encode the Nod2 protein. Sequence analysis of Nod2 from 45 different strains of Mus musculus and Mus spretus revealed extensive polymorphism involving all exons of Nod2. Of the 140 polymorphic sites identified, 68 were located in the coding region, of which 28 created amino acid substitutions in Nod2. Expression of mouse Nod2 activated NF-kappaB and conferred responsiveness to bacterial components, an activity that was deficient in mutants corresponding to those associated with susceptibility to Crohn's disease. These studies demonstrate a conserved role for Nod2 in the response to bacterial components and suggest that selective evolutionary pressure exerted by pathogens may have contributed to the high level of variability of Nod2 sequences in both humans and mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0888-7543(03)00027-2 | DOI Listing |
Mol Cell Biochem
January 2025
Department of Digestive Diseases, Changsha Central Hospital Affiliated to University of South China, No.161 Shaoshan Nanlu, Changsha, Hunan, China.
Endoplasmic reticulum (ER) stress is crucially involved in inflammatory bowel disease (IBD), but the mechanisms remain incompletely understood. This study aimed to elucidate how ER stress promotes inflammation in IBD. ER stress marker Grp78 and NOD2 in colon tissues of Crohn's disease (CD) patients and IBD model mice were detected by immunohistochemical analysis.
View Article and Find Full Text PDFInt Immunopharmacol
February 2025
Department of Dermatology, First Affiliated Hospital of Gannan Medical University, Joint Organization of Jiangxi Clinical Medicine Research Center for Dermatology, Ganzhou 341000, China. Electronic address:
Background: Psoriasis is a chronic inflammatory skin disease regulated by autoimmunity, and pyroptosis plays an important role in this condition. This research sought to examine the function and potential molecular pathway of Gasdermin D (GSDMD) in psoriasis.
Methods: GSDMD expression was examined by immunohistochemistry in biopsied skin tissues from patients with psoriasis.
ACS Chem Biol
January 2025
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
Bacterial peptidoglycan, the essential cell surface polymer that protects bacterial integrity, also serves as the molecular pattern recognized by the host's innate immune system. Although the minimal motifs of bacterial peptidoglycan fragments (PGNs) that activate mammalian NOD1 and NOD2 sensors are well-known and often represented by small canonical ligands, the immunostimulatory effects of natural PGNs, which are structurally more complex and potentially can simultaneously activate both the NOD1 and NOD2 signaling pathways in hosts, have not been comprehensively investigated. In particular, many bacteria incorporate additional structural modifications in peptidoglycans to evade host immune surveillance, resulting in diverse structural variations among natural PGNs that may influence their biological effects in hosts.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
December 2024
Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, Japan.
Here, we examined the immunomodulating effects of Heyndrickxia coagulans SANK70258 (SANK70258). Mouse splenocytes treated with γ-ray-irradiated SANK70258 produced higher levels of IFN-γ than those with 7 types of lactic acid bacteria. IFN-γ was mainly produced by NK cells, involving IL-12/IL-23, dendritic cells (DCs), and NFκB signaling.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
Lipoteichoic acid (LTA) and peptidoglycan (PGN) are considered as key virulence factors of , which is a representative sepsis-causing Gram-positive pathogen. However, cooperative effect of LTA and PGN on nitric oxide (NO) production is still unclear despite the pivotal roles of NO in initiation and progression of sepsis. We here evaluated the cooperative effects of LTA (SaLTA) and muramyl dipeptide (MDP), the minimal structure of PGN, on NO production in both a mouse macrophage-like cell line, RAW 264.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!