Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The selective adsorption of supercoiled plasmid, open-circular plasmid, and genomic DNA to gyrolite, a compound from the class of crystalline calcium silicate hydrates, is investigated and exploited for purification purposes. Genomic DNA and open-circular plasmid bind to gyrolite adsorbents with greater affinity than the more conformationally constrained supercoiled plasmid. As such, the gyrolite adsorbents are an economical and scaleable alternative to chromatographic purification for the removal of DNA impurities from solutions containing supercoiled plasmid. The advantage of gyrolite adsorbents is their lower unit price and ability to selectively adsorb DNA impurities without binding supercoiled plasmid under certain conditions. The effects of ionic strength, temperature, chelating agent, divalent cation, and lyotropic salts on adsorption of highly purified plasmid are studied to understand the forces that bind DNA to gyrolite, a structure with hydrophilic and hydrophobic characteristics. The results indicate that DNA binding is governed by hydrogen bonding, electrostatic bridging with divalent cations, shielding of electrostatic repulsion, hydrophobic adsorption, and disruption of integral surface water layer on gyrolite. On the basis of results from a range of Hofmeister series salts, strongly hydrated anions may enhance DNA adsorption by promoting hydrophobic interactions between DNA and gyrolite. Conversely, the very weakly hydrated chaotrope I(-) may enhance adsorption by strongly associating with hydrophobic siloxanes of gyrolite, thereby disrupting an integral water layer, which competes for hydrogen bonding sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bp020043e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!