Produced water from the Coleville oil field in Saskatchewan, Canada was used to inoculate continuous up-flow packed-bed bioreactors. When 7.8 mM sulfate and 25 mM lactate were present in the in-flowing medium, H(2)S production (souring) by sulfate-reducing bacteria (SRB) was prevented by addition of 17.5 mM nitrate or 20 mM nitrite. Changing the sulfate or lactate concentration of the in-flowing medium indicated that the concentrations of nitrate or nitrite required for containment of souring decreased proportionally with a lowered concentration of the electron donor lactate, while the sulfate concentration of the medium had no effect. Microbial communities were dominated by SRB. Nitrate addition did not give rise to changes in community composition, indicating that lactate oxidation and H(2)S removal were caused by the combined action of SRB and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). Apparently the nitrite concentrations formed by these NR-SOB did not inhibit the SRB sufficiently to cause community shifts. In contrast, significant community shifts were observed upon direct addition of high concentrations (20 mM) of nitrite. Strains NO3A and NO2B, two newly isolated, nitrate-reducing bacteria (NRB) emerged as major community members. These were found to belong to the epsilon-division of the Proteobacteria, to be most closely related to Campylobacter lari, and to oxidize lactate with nitrate or nitrite as the electron acceptor. Thus the mechanism of microbial H(2)S removal in up-flow packed-bed bioreactors depended on whether nitrate (SRB/NR-SOB) or nitrite (SRB/NR-SOB as well as NRB) was used. However, the amount of nitrate or nitrite needed to completely remove H(2)S was dictated by the electron donor (lactate) concentration, irrespective of mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bp020128f | DOI Listing |
Free Radic Biol Med
January 2025
University of Exeter, Medical School, Faculty of Health and Life Sciences, St Luke's Campus, Exeter, EX1 2LU, UK. Electronic address:
Plasma nitrate (NO) and nitrite (NO) increase in a dose-dependent manner following NO ingestion. To explore if the same dose-response relationship applies to other nitric oxide (NO) congeners in different blood compartments and skeletal muscle, as well as the subsequent physiological responses, we provided 11 healthy participants with NO depleted beetroot juice (placebo), and beetroot juice (BR) containing 6.4, 12.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Animal & Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
Residual nitrite (NO) and nitrate (NO) have been widely studied in the past few decades for their function to improve processed meat quality and their impact on human health. In this study we examined how the residual nitrite and nitrate (NO) content of major classes of processed meats products (n = 1132) produced locally from three regions (East Coast, Midwest and West Coast) and plant protein-based meat analogues (n = 53) available at retail in the United States was influenced by their composition, processing, and geographical attributes. We also conducted time-dependent depletion studies and observed different patterns of NO depletion and conversion during processing and storage and correlated them with product quality.
View Article and Find Full Text PDFNutrients
January 2025
Department of Public Health & Exercise Science, Appalachian State University, Boone, NC 28607, USA.
Background: Quercetin (QCT) and citrulline (CIT) have been independently associated with improved antioxidant capacity and nitric oxide (NO) production, potentially enhancing cardiovascular function and exercise performance. This study aimed to evaluate the combined and independent effects of QCT and CIT supplementation on NO metabolites and antioxidant biomarkers in 50 trained cyclists undergoing a 20 km cycling time trial (TT).
Methods: In a randomized, double-blind, placebo-controlled design, forty-two male and eight female trained cyclists were assigned to QCT + CIT, QCT, CIT, or placebo (PL) groups.
Biomedicines
December 2024
1st Department of Obstetrics and Gynecology, Alexandra General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece.
Obesity reduces nitric oxide (NO) production due to endothelial nitric oxide synthase (eNOS) dysfunction, resulting in oxidative stress, mitochondrial dysfunction, and chronic inflammation. These factors have a negative impact on reproductive health, including oocyte quality, endometrial receptivity, and embryo implantation. When oxidative stress affects eNOS function, the nitrate-nitrite-nitric oxide (NO-NO-NO) pathway provides an alternate route for NO production.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
Melatonin (Mel) is a tryptophan-derived (N-acetyl-5-methoxytryptamine) molecule. In the present study, role of Mel in the regulation of various anaplerotic enzymes is discussed in relation to N metabolism and H-ATPase activity in mung bean under Cd stress. The application of Mel to the Cd-stressed mung bean seedlings was remarkable in improving the activity of hexokinase (35.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!