Future success using chemotherapy against human gliomas may result from exploiting unique molecular vulnerabilities of these tumors. Chemotherapy frequently results in DNA damage. When such damage is sensed by the cell, programmed cell death, or apoptosis, may be initiated. However, chemotherapy-induced DNA damage may activate nuclear factor kappa B (NF-kappaB) and block apoptosis. We inhibited NF-kappaB using a gene therapy approach to determine whether this would render human glioma cells more susceptible to chemotherapy. U87 and U251 glioma cell lines were infected with either treatment adenovirus containing the gene for a mutant non-degradable form of IkappaBalpha, which is an inhibitor of NF-kappaB nuclear translocation, or empty control virus. Following viral infection, cells were treated either with BCNU, carboplatin, tumor necrosis factor alpha (TNF-alpha), or SN-38. Chemotherapy resulted in a marked increase in active intranuclear NF-kappaB. This response was greatly decreased by insertion of the mutant repressor gene. Similarly, a significant increase in cell killing by all chemotherapy age was demonstrated following infection with treatment virus. Expression of the mutant repressor gene also resulted in increased apoptosis by TUNEL assay following chemotherapy. Numerous genes are responsible for glioma chemoresistance. DNA damage by chemotherapy may induce the antiapoptotic factor NF-kappaB and prevent programmed cell death. Insertion of a mutant inhibitor of NF-kappaB strips cells of this antiapoptotic defense and renders them more susceptible to killing by chemotherapy via increased apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1022554824129 | DOI Listing |
Inflamm Res
January 2025
Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.
Background: Mitochondrial dysfunction and damage can result in the release of mitochondrial DNA (mtDNA) into the cytoplasm, which subsequently activates the cGAS-STING pathway, promoting the onset of inflammatory diseases. Various factors, such as oxidative stress, viral infection, and drug toxicity, have been identified as inducers of mitochondrial damage. This study aims to investigate the role of mtDNA as a critical inflammatory mediator in the pathogenesis of ketamine (KET)-induced cystitis (KC) through the cGAS-STING pathway.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China.
The mechanism by which DNA-damage affects self-renewal and pluripotency remains unclear. DNA damage and repair mechanisms have been largely elucidated in mutated cancer cells or simple eukaryotes, making valid interpretations on early development difficult. Here we show the impact of ionizing irradiation on the maintenance and early differentiation of mouse embryonic stem cells (ESCs).
View Article and Find Full Text PDFSci Rep
January 2025
Reproductive Biology Laboratory, Centre for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands.
Radiation therapy is a common treatment modality for lung cancer, and resistance to radiation can significantly affect treatment outcomes. We recently described that lung cancer cells that express more germ cell cancer genes (GC genes, genes that are usually restricted to the germ line) can repair DNA double-strand breaks more rapidly, show higher rates of proliferation and are more resistant to ionizing radiation than cells that express fewer GC genes. The gene encoding TRIP13 appeared to play a large role in this malignant phenotype.
View Article and Find Full Text PDFExp Mol Med
January 2025
Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
FHIT is a fragile site tumor suppressor that is primarily inactivated upon tobacco smoking. FHIT loss is frequently observed in lung cancer, making it an important biomarker for the development of targeted therapy for lung cancer. Here, we report that inhibitors of glycogen synthase kinase 3 beta (GSK3β) and the homologous recombination DNA repair (HRR) pathway are synthetic lethal with FHIT loss in lung cancer.
View Article and Find Full Text PDFCyclobutane pyrimidine dimers (CPDs) are formed in DNA following exposure to ultraviolet (UV) light and are mutagenic unless repaired by nucleotide excision repair (NER). It is known that CPD repair rates vary in different genome regions due to transcription-coupled NER and differences in chromatin accessibility; however, the impact of regional chromatin organization on CPD formation remains unclear. Furthermore, nucleosomes are known to modulate UV damage and repair activity, but how these damage and repair patterns are affected by the overarching chromatin domains in which these nucleosomes are located is not understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!