To evaluate the effects of chronic pressure overload on different parts of the left ventricle (LV), we examined a myosin isoform shift from V1 to V3 as a biochemical marker of LV hypertrophy in Dahl salt-sensitive (DS) rats. Six-week-old DS rats were fed an 8% (high salt, HS; n = 24) or a 0.3% (low salt, LS; n = 12) NaCl diet. After 2 or 4 weeks, the hearts were dissected and the LVs were separated into four parts (the base and mid-portion of the interventricular septum (IVS), and the base and mid-portion of the LV free wall) for isomyosin analysis. The myosin isoform shift was analyzed by pyrophosphate gel electrophoresis. Both blood pressure and LV/body weight ratio were clearly increased in the HS group. The myosin isoform shift from V1 to V3, which was measured as a decrease in the percentage of V1 isomyosin, was demonstrated only in the base of LV, with significant predominance in the IVS at 2 weeks and in all four parts at 4 weeks in the HS group. In the LS group, a myosin isoform shift was demonstrated only in the basal portion of the LV at 4 weeks. We concluded that, in rats with salt-induced hypertension, the myosin isoform shift from V1 to V3 starts at the base of the LV, and particularly at the base of the IVS, and then spreads across the entire LV. These results suggest that pressure overload from hypertension may be strongest at the base of the IVS, and that LV hypertrophy may originate at the IVS base.

Download full-text PDF

Source
http://dx.doi.org/10.1291/hypres.26.251DOI Listing

Publication Analysis

Top Keywords

myosin isoform
24
isoform shift
24
dahl salt-sensitive
8
pressure overload
8
base mid-portion
8
ivs base
8
group myosin
8
base ivs
8
base
7
myosin
6

Similar Publications

While acute exercise affects sarcoplasmic reticulum (SR) function, the impact of resistance training remains unclear. The purpose of the present study was to investigate SR Ca handling plasticity in response to moderate- and high-volume strength training in elite rowers. Twenty elite male (n = 12) and female (n = 8) rowers performed three weekly strength training sessions for 8 weeks and were randomly allocated to either perform 3 sets (3-SET) or progressive increase from 5 to 10 sets (10-SET) of 10 repetitions during the training period.

View Article and Find Full Text PDF

Cold-water fishes, such as Brook trout (Salvelinus fontinalis), are being challenged by the consequences of climate change. The ability of these fish to acclimate to warmer environmental conditions is vital to their survival. Acclimation to warmer water may allow brook trout to reduce the metabolic costs of higher temperatures.

View Article and Find Full Text PDF

Background: Pulmonary hypertension (PH) often leads to right ventricle (RV) failure, a significant cause of morbidity and mortality. Despite advancements in PH management, progression to RV maladaptation and subsequent failure remain a clinical challenge. This study explored the effect of paroxetine, a selective serotonin reuptake inhibitor (SSRI), on RV function in a rat model of PH, hypothesizing that it improves RV function by inhibiting G protein-coupled receptor kinase 2 (GRK2) and altering myofilament protein phosphorylation.

View Article and Find Full Text PDF

A Drosophila cardiac myosin increases jump muscle stretch activation and shortening deactivation.

Biophys J

January 2025

Department of Biological Sciences & Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York. Electronic address:

Stretch activation (SA), a delayed increase in force production after rapid muscle lengthening, is critical to the function of vertebrate cardiac muscle and insect asynchronous indirect flight muscle. SA enables or increases power generation in muscle types used in a cyclical manner. Recently, myosin isoform expression has been implicated as a mechanism for varying the amplitude of SA in some muscle types.

View Article and Find Full Text PDF

Traditional transcriptomic studies often overlook the complex heterogeneity of skeletal muscle, as they typically isolate RNA from mixed muscle fibre and cell populations, resulting in an averaged transcriptomic profile that obscures fibre type-specific differences. This study assessed the potential of the recently developed Xenium platform for high-resolution spatial transcriptomic analysis of human skeletal muscle histological sections. Human vastus lateralis muscle samples from two individuals were analysed using the Xenium platform and Human Multi-Tissue and Cancer Panel targeting 377 genes complemented by staining of successive sections for Myosin Heavy Chain isoforms to differentiate between type 1 and type 2 muscle fibres.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!