Muscarinic M2-receptors allow for divergent modes of allosteric action, depending on the structure of the allosteric modulator. Phthalimido-substituted bis(ammonio)alkane-type modulators belong to the common mode allosteric agents, whereas a physicochemically closely related bispyridinium-oxime with dichlorobenzyl-substituents at both ends is an atypical agent. Here, we compared the actions of stepwise shortened compounds composed of the phthalimido moiety and middle chains of either the bispyridinium- or the bis(ammonio)alkane-type. Allosteric interactions were measured in pig M2 receptors with the orthosteric probe [3H]N-methylscopolamine ([3H]NMS) to label the acetylcholine binding site of the receptors. Dissociation and equilibrium binding experiments revealed parallel structure/activity-relationships in both series of compounds with regard to the cooperativity of interaction with [3H]NMS and to the underlying binding affinities in radioligand-occupied and free receptors. In conclusion, the findings are in line with the hypothesis that the phthalimido-moiety, but not the middle chain, is pivotal for the topology of interaction with the M2-receptor protein.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1022858414900DOI Listing

Publication Analysis

Top Keywords

stepwise shortened
8
bispyridinium- bisammonioalkane-type
8
bisammonioalkane-type allosteric
8
allosteric
5
cooperative interactions
4
interactions muscarinic
4
muscarinic acetylcholine
4
receptors
4
acetylcholine receptors
4
receptors structure/activity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!