Optimization of cultivation condition of recombinant E. coli DH5 alpha/pDH-B2m and the condition suitable for expression of recombinant mature peptide of human bone morphogenetic protein-2 was carried out in 500 mL shaking flasks and then transferred to NBS Bioflo IV, a 20 L DO feed-back fed-batch culture system, to obtain rhBMP-2. The results indicate that keeping dissolved oxygen at 40% and controlling nutrient feeding rate with DO feed back strategy can obtain theoretically 3.59 g recombinant mature peptide of hBMP-2 per liter of broth, the final cell density OD600 reaches 57(22.8 g dry cell weight/L), and the expression of rhBMP-2 amounts to 30% of the total protein in E. coli.

Download full-text PDF

Source

Publication Analysis

Top Keywords

fed-batch culture
8
coli dh5
8
dh5 alpha/pdh-b2m
8
recombinant mature
8
mature peptide
8
[high density
4
density fed-batch
4
culture escherichia
4
escherichia coli
4
alpha/pdh-b2m feed-back
4

Similar Publications

Adeno-associated virus (AAV)-associated gene therapy has been increasingly promising, in light of the drugs progressed to clinical trials or approved for medications internationally. Therefore, scalable and efficient production of recombinant AAV is pivotal for advancing gene therapy. Traditional methods, such as the triple-plasmid transfection of human embryonic kidney 293 cells in suspension culture, have been widely employed but often hampered by low unit yield.

View Article and Find Full Text PDF

Identification of cellular signatures associated with chinese hamster ovary cell adaptation for secretion of antibodies.

Comput Struct Biotechnol J

December 2024

Cell Culture and Fermentation Sciences, BioPharmaceutical Development, AstraZeneca, Cambridge UK.

The secretory capacity of Chinese hamster ovary (CHO) cells remains a fundamental bottleneck in the manufacturing of protein-based therapeutics. Unconventional biological drugs with complex structures and processing requirements are particularly problematic. Although engineered vector DNA elements can achieve rapid and high-level therapeutic protein production, a high metabolic and protein folding burden is imposed on the host cell.

View Article and Find Full Text PDF

Bacteria can be engineered to manufacture chemicals, but it is unclear how to optimally engineer a single cell to maximise production performance from batch cultures. Moreover, the performance of engineered production pathways is affected by competition for the host's native resources. Here, using a 'host-aware' computational framework which captures competition for both metabolic and gene expression resources, we uncover design principles for engineering the expression of host and production enzymes at the cell level which maximise volumetric productivity and yield from batch cultures.

View Article and Find Full Text PDF

Zeaxanthin Production by an Antarctic sp.: Effect of Dissolved Oxygen Concentration and Modeling Kinetics in Batch and Fed-Batch Fermentation.

ACS Omega

December 2024

Departamento de Bioingeniería, Facultad de Ingeniería, Universidad de la República, Montevideo 11300, Uruguay.

Zeaxanthin is a high-value carotenoid, found naturally in fruits and vegetables, flowers, and microorganisms. genus is widely known for the production of zeaxanthin in its free form. Nowadays, the production of zeaxanthin from bacteria is still noncompetitive with traditional methods.

View Article and Find Full Text PDF

Converting multiple hydrophobic aromatic plastic monomers into a single water-soluble substrate to increase bioavailability for the synthesis of polyhydroxyalkanoates by bacteria using batch, fed batch and continuous cultivation.

J Biotechnol

December 2024

School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin D04 N2E5, Ireland; BiOrbic Bioeconomy Research Centre, O'Brien Centre for Science [Science East], University College Dublin, Dublin D04 N2E5, Ireland. Electronic address:

We demonstrate the proof of concept of increasing the bioavailability of carbon substrates, derived from plastic waste, for their conversion to the biodegradable polymer polyhydroxyalkanoate [PHA] by bacteria and test various approaches to PHA accumulation through batch, fed batch and continuous culture. Styrene, ethylbenzene, and toluene are produced from the pyrolysis of mixed plastic waste (Kaminsky, 2021; Miandad et al., 2017), but they are volatile and poorly soluble in water making them difficult to work with in aqueous fermentation systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!