Bromelain inhibitor VI (BI-VI), a cysteine proteinase inhibitor from pineapple stem, is a unique double-chain molecule composed of two distinct domains A and B. In order to clarify the molecular mechanism of the proteinase-inhibitor interaction, we investigated the electrostatic properties of this inhibitor. The inhibitory activity toward bromelain was revealed to be maximal at pH 3-4 and the gross conformation to be stable over a wide range of pH. Based on these results, pH titration experiments were performed on the proton resonances of BI-VI in the pH range of 1.5-9.9, and pKa values (pKexp) were determined for all carboxyl groups and alpha-amino groups. The pKexp were also compared with theoretical values calculated from the NMR-derived structures of BI-VI. The electrostatic surface potential map constructed using the pKexp values revealed that BI-VI possesses continuous negatively charged and scattered positively charged regions on the molecular surface and both regions appear to serve for docking properly with a basic target enzyme. Furthermore, it was suggested that the ionic interaction of the inhibitor with the target enzyme is primarily important for the inhibition, which seems to involve some carboxyl groups in the inhibitor and a thiol group in the proteinase.

Download full-text PDF

Source
http://dx.doi.org/10.1515/BC.2003.010DOI Listing

Publication Analysis

Top Keywords

pka values
8
bromelain inhibitor
8
inhibitor pineapple
8
pineapple stem
8
carboxyl groups
8
target enzyme
8
inhibitor
6
nuclear magnetic
4
magnetic resonance
4
resonance studies
4

Similar Publications

Interpretable Deep-Learning p Prediction for Small Molecule Drugs via Atomic Sensitivity Analysis.

J Chem Inf Model

January 2025

Department of Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States.

Machine learning (ML) models now play a crucial role in predicting properties essential to drug development, such as a drug's logscale acid-dissociation constant (p). Despite recent architectural advances, these models often generalize poorly to novel compounds due to a scarcity of ground-truth data. Further, these models lack interpretability.

View Article and Find Full Text PDF

Coumarin compounds have heterocyclic core with different properties such as high quantum yields, broad Stokes shifts, and superior photophysical and biological activity. It is known that fluorescence properties increase with increased intramolecular charge transfer in systems where electron-withdrawing or donor groups are attached to different positions of the coumarin compound. When these compounds interact with analytes in the environment, the analytes in the environment can be detected by quenching or increasing fluorescence.

View Article and Find Full Text PDF

p Matching Enables Quantum Proton Delocalization in Acid-1-Methylimidazole Binary Mixtures.

J Chem Inf Model

January 2025

Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States.

Short hydrogen bonds (SHBs), characterized by donor-acceptor heteroatom separations below 2.7 Å, are prevalent in condensed-phase systems. Recently, we identified SHBs in nonaqueous binary mixtures of acetic acid and 1-methylimidazole (MIm), where electronic and nuclear quantum effects facilitate extensive proton delocalization.

View Article and Find Full Text PDF

Comparative photocatalytic degradation of cationic rhodamine B and anionic bromocresol green using reduced ZnO: A detailed kinetic modeling approach.

Chemosphere

January 2025

Center for Green Chemistry and Environmental Biotechnology, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 406-840, South Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 653 Coupure Links, Ghent, B-9000, Belgium. Electronic address:

The photocatalytic degradation of rhodamine B (RhB), a cationic dye, and bromocresol green (BCG), an anionic dye, was investigated using oxygen vacancy-enriched ZnO as the catalyst. These dyes were selected due to their differing charges and molecular structures, allowing for a deeper exploration of how these characteristics impact the degradation process. The catalyst was prepared by reducing ZnO with 10% H/Ar gas at 500 °C, and the introduction of oxygen vacancies was confirmed using various characterization techniques.

View Article and Find Full Text PDF

Aqueous Solubility of Sodium and Chloride Salts of Glycine─"Uncommon" Common-Ion Effects of Self-Titrating Solids.

Mol Pharm

January 2025

Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States.

Although glycine is the simplest of the amino acids, its solution and solid-state properties are far from straightforward. The aqueous solubility of glycine plays an important role in various applications, including nutrition, food products, biodegradable plastics, and drug development. There is evidence that glycine in subsaturated pH 3-8 solutions forms a dimer, as suggested by several techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!