Three-dimensional electron dose calculation using an improved hybrid pencil beam model.

Med Phys

Key Lab for Radiation Physics & Technology of the Education Ministry of China, Institute of Nuclear and Technology, Sichuan University, Chengdu, 610065, People's Republic of China.

Published: March 2003

An improved hybrid-pencil beam model (HPBM) for electron-beam three-dimensional dose calculation has been studied. The model is based on the fact that away from the edges of a large field, the electron distribution function exactly equals that for an infinitely wide electron beam. In the present model, we use the bipartition model to calculate the longitudinal part of the pencil-beam distribution function, and Fermi-Eyges multiple-scattering theory to calculate its transverse part. In order to describe the electron beam characteristics accurately, we introduce a new parameter, which is extracted from measured profile data near the surface of a water phantom, to correct the transverse distribution determined by the Fermi-Eyges theory. Furthermore, we introduce an effective energy spectrum to describe the effect on the collimated electron beam of the accelerator head. The dose distributions calculated with the improved HPBM were compared with the experimental data, and the agreement was within 1% in most of cases. This preliminary study has demonstrated the potential for use of the model in the clinical therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.1538234DOI Listing

Publication Analysis

Top Keywords

beam model
12
electron beam
12
dose calculation
8
distribution function
8
model
6
beam
5
three-dimensional electron
4
electron dose
4
calculation improved
4
improved hybrid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!