Heritable dilated cardiomyopathy is a genetically highly heterogeneous disease. To date 17 different chromosomal loci have been described for autosomal dominant forms of dilated cardiomyopathy with or without additional clinical manifestations. Among the 10 mutated genes associated with dilated cardiomyopathy, the lamin A/C (LMNA) gene has been reported in forms associated with conduction-system disease with or without skeletal muscle myopathy. For the first time, we report here a French family affected with a new phenotype composed of an autosomal dominant severe dilated cardiomyopathy with conduction defects or atrial/ventricular arrhythmias, and a specific quadriceps muscle myopathy. In all previously reported cases with both cardiac and neuromuscular involvement, neuromuscular disorders preceded cardiac abnormalities. The screening of the coding sequence of the LMNA gene on all family members was performed and we identified a missense mutation (R377H) in the lamin A/C gene that cosegregated with the disease in the family. Cell transfection experiments showed that the R377H mutation leads to mislocalization of both lamin and emerin. These results were obtained in both muscular (C2C12) and non-muscular cells (COS-7). This new phenotype points out the wide spectrum of neuromuscular and cardiac manifestations associated with lamin A/C mutations, with the functional consequence of this mutation seemingly associated with a disorganization of the lamina.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/humu.10170 | DOI Listing |
Clin Genet
January 2025
Sorbonne Université- DMU BioGem-Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, Service de Biochimie Métabolique, APHP-Hôpital Universitaire Pitié Salpêtrière, Paris, France.
Titin truncating variants (TTNtv) are the main genetic cause of dilated cardiomyopathies (DCMs). The phenotype and prognosis of probands have been evaluated in several large cohorts. However, few data are available on intrafamilial expressivity.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
Protein homeostasis is crucial for maintaining cardiomyocyte (CM) function. Disruption of proteostasis results in accumulation of protein aggregates causing cardiac pathologies such as hypertrophy, dilated cardiomyopathy (DCM), and heart failure. Here, we identify ubiquitin-specific peptidase 5 (USP5) as a critical determinant of protein quality control (PQC) in CM.
View Article and Find Full Text PDFArq Bras Cardiol
January 2025
Programa de Pós-Graduação em Alimentação, Nutrição e Saúde - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS - Brasil.
Background: The angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism (rs4340) is associated with the pathogenesis of heart failure (HF). This polymorphism may contribute to a greater propensity for severe HF and excess weight.
Objective: To evaluate adiposity, cardiac function, and their association with ACE I/D polymorphism in HF patients.
Circ Genom Precis Med
January 2025
Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (S.L.V.M.S., N.J.B., M.F.G.H.M.V., V.P.M.v.E., J.A.J.V.).
Front Surg
January 2025
Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
We report a case of a patient with dilated cardiomyopathy who experienced recurrent ventricular tachycardia (VT) and multiple defibrillations following CRT-D implantation. Due to worsening cardiac function, the patient required surgical implantation of a left ventricular assist device (LVAD) as a bridge to heart transplantation. During the procedure, we used the Ensite three-dimensional mapping system to perform activation and substrate mapping of the VT targets, followed by endocardial and epicardial cryoballoon ablation of clinical VT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!