Characterization and behaviour of alpha-glucan synthase in Schizosaccharomyces pombe as revealed by electron microscopy.

Yeast

Laboratory of Electron Microscopy, Faculty of Science, Japan Women's University, 2-8-1, Mejirodai, Bunkyo-ku, Tokyo 112 -8681, Japan.

Published: April 2003

Alpha-1,3-Glucan is a cell wall component in Schizosaccharomyces pombe and is exclusive to budding yeast. We analysed the ultrastructure of the cell wall in the alpha-glucan synthase mutant mok1 and determined the role of alpha-1,3-glucan in cell wall formation of Sz. pombe. The mok1 mutant cell has an abnormal shape, with swelling at the tip or at the site of the septum. The cell wall is thicker and looser than that of wild-type cells, and the layered structure of the cell wall is broken. The glucan fibrils forming the protoplast retain a fine fibril structure, although their development into bundles is abnormal. We also report the localization of Mok1p by immunoelectron microscopy using high-pressure freeze substitution and SDS-digested freeze-fracture replica labelling methods. The Mok1p is localized on the cell membrane and moves from the cell tip to the medial region during the cell cycle. These results confirm that Mok1p plays an important role in the normal construction of the cell wall and in the primary step of glucan bundle formation, and that it is required for new cell wall synthesis during vegetative growth. These findings suggest that alpha-1,3-glucan is an essential component for cell wall formation in fission yeast.

Download full-text PDF

Source
http://dx.doi.org/10.1002/yea.974DOI Listing

Publication Analysis

Top Keywords

cell wall
32
cell
12
alpha-glucan synthase
8
schizosaccharomyces pombe
8
alpha-13-glucan cell
8
wall
8
wall formation
8
characterization behaviour
4
behaviour alpha-glucan
4
synthase schizosaccharomyces
4

Similar Publications

The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.

View Article and Find Full Text PDF

Escherichia coli O157:H7 has caused many foodborne disease outbreaks and resulted in unimaginable economic losses. With the evolution of food consumption, people prefer natural preservatives. In this study, the natural agent harmane exhibited potential activity against E.

View Article and Find Full Text PDF

Mycoplasma pneumoniae drives macrophage lipid uptake via GlpD-mediated oxidation, facilitating foam cell formation.

Int J Med Microbiol

January 2025

Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.

Cardiovascular diseases, primarily caused by atherosclerosis, are a major public health concern worldwide. Atherosclerosis is characterized by chronic inflammation and lipid accumulation in the arterial wall, leading to plaque formation. In this process, macrophages play a crucial role by ingesting lipids and transforming into foam cells, which contribute to plaque instability and cardiovascular events.

View Article and Find Full Text PDF

The Impact of Modifiable Risk Factors on the Endothelial Cell Methylome and Cardiovascular Disease Development.

Front Biosci (Landmark Ed)

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.

Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.

View Article and Find Full Text PDF

Seasonal Pattern of Endo-β-Mannanase Activity During Germination of , Exhibiting Morphophysiological Dormancy.

Plants (Basel)

January 2025

Department of Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea.

Morphophysiological dormancy (MPD) is considered one of the most primitive dormancy classes among seed plants. While extensive studies have examined the occurrence of endo-β-mannanase in seeds with physiological dormancy (PD) or non-dormancy, little is known about the activity of this enzyme in seeds with MPD. This study aimed to investigate the temporal and spatial patterns of endo-β-mannanase activity during dormancy break and germination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!