Poly(ADP-ribose) polymerase in base excision repair: always engaged, but not essential for DNA damage processing.

Acta Biochim Pol

MRC Radiation and Genome Stability Unit, Harwell, Oxfordshire, OX11 0RD, UK.

Published: December 2003

Poly(ADP-ribose) polymerase (PARP-1) is an abundant nuclear protein with a high affinity for single- and double-strand DNA breaks. Its binding to strand breaks promotes catalysis of the covalent modification of nuclear proteins with poly(ADP-ribose) synthesised from NAD(+). PARP-1-knockout cells are extremely sensitive to alkylating agents, suggesting the involvement of PARP-1 in base excision repair; however, its role remains unclear. We investigated the dependence of base excision repair pathways on PARP-1 and NAD(+) using whole cell extracts derived from normal and PARP-1 deficient mouse cells and DNA substrates containing abasic sites. In normal extracts the rate of repair was highly dependent on NAD(+). We found that in the absence of NAD(+) repair was slowed down 4-6-fold after incision of the abasic site. We also established that in extracts from PARP-1 deficient mouse cells, repair of both regular and reduced abasic sites was increased with respect to normal extracts and was NAD(+)-independent, suggesting that in both short- and long-patch BER PARP-1 slows down, rather than stimulates, the repair reaction. Our data support the proposal that PARP-1 does not play a major role in catalysis of DNA damage processing via either base excision repair pathway.

Download full-text PDF

Source

Publication Analysis

Top Keywords

base excision
16
excision repair
16
polyadp-ribose polymerase
8
repair
8
dna damage
8
damage processing
8
parp-1 deficient
8
deficient mouse
8
mouse cells
8
abasic sites
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!