p53 has a role in many cellular processes through the transcriptional regulation of target genes. PAC1 (phosphatase of activated cells 1; also known as dual specificity phosphatase 2, DUSP2) is a dual threonine/tyrosine phosphatase that specifically dephosphorylates and inactivates mitogen-activated protein (MAP) kinases. Here we show that during apoptosis, p53 activates transcription of PAC1 by binding to a palindromic site in the PAC1 promoter. PAC1 transcription is induced in response to serum deprivation and oxidative stress, which results in p53-dependent apoptosis, but not in response to gamma-irradiation, which causes cell cycle arrest. Reduction of PAC1 transcription using small interfering RNA inhibits p53-mediated apoptosis, whereas overexpression of PAC1 increases susceptibility to apoptosis and suppresses tumour formation. Moreover, activation of p53 significantly inhibits MAP kinase activity. We conclude that, under specific stress conditions, p53 regulates transcription of PAC1 through a new p53-binding site, and that PAC1 is necessary and sufficient for p53-mediated apoptosis. Identification of a palindromic motif as a p53-binding site may reveal a novel mechanism whereby p53 regulates its target genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature01519 | DOI Listing |
Sci Rep
January 2025
Department of Emergency Medicine, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Changsha, Hunan, China.
Our study aims to investigate the role of pyrimidine metabolism in prostate cancer and its associations with the immune microenvironment, drug sensitivity, and tumor mutation burden. Through transcriptomic and single-cell RNA sequencing analyses, we explored metabolic pathway enrichment, immune infiltration patterns, and differential gene expression in prostate cancer samples. The results showed that pyrimidine metabolism-related genes were significantly upregulated in the P2 subgroup compared to the P1 subgroup, with enhanced metabolic activity observed in basal and luminal epithelial cells.
View Article and Find Full Text PDFJ Blood Med
January 2025
Department of Blood Transfusion of Yong-chuan Hospital, Chongqing Medical University, Chongqing, 402160, People's Republic of China.
Purpose: To study the platelet adhesion and aggregation behaviour of late pregnancy women under arterial shear rate using microfluidic chip technology and evaluate the risk of thrombosis in late pregnancy.
Methods: We included pregnant women who were registered in the obstetrics department of our hospital between January 2021 and October 2022 and underwent regular prenatal examinations. Blood samples were collected at 32-35 weeks of gestation for routine blood tests and progesterone, oestradiol, and platelet aggregation function.
Br J Pharmacol
January 2025
Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA.
Background And Purpose: Pituitary adenylate cyclase activating polypeptide (PACAP) is a human migraine trigger that is being targeted for migraine. The δ-opioid receptor (δ-receptor) is a novel target for the treatment of migraine, but its mechanism remains unclear. The goals of this study were to develop a mouse PACAP-headache model using clinically significant doses of PACAP; determine the effects of δ-receptor activation in this model; and investigate the co-expression of δ-receptors, PACAP and PACAP-PAC1 receptor.
View Article and Find Full Text PDFSci Adv
January 2025
Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.
The proteasome degrades most superfluous and damaged proteins, and its decline is associated with many diseases. As the proteolytic unit, the 20 proteasome is assembled from 28 subunits assisted by chaperones PAC1/2/3/4 and POMP; then, it undergoes the maturation process, in which the proteolytic sites are activated and the assembly chaperones are cleared. However, mechanisms governing the maturation remain elusive.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037 Marburg, Germany.
A possible involvement of immune- and vasoregulatory PACAP signaling at the PAC1 receptor in atherogenesis and plaque-associated vascular inflammation has been suggested. Therefore, we tested the PAC1 receptor agonist Maxadilan and the PAC1 selective antagonist M65 on plaque development and lumen stenosis in the ApoE atherosclerosis model for possible effects on atherogenesis. Adult male ApoE mice were fed a cholesterol-enriched diet (CED) or standard chow (SC) treated with Maxadilan, M65 or Sham.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!