Our Solar System formed approximately 4.6 billion years ago from the collapse of a dense core inside an interstellar molecular cloud. The subsequent formation of solid bodies took place rapidly. The period of &<10 million years over which planetesimals were assembled can be investigated through the study of meteorites. Although some planetesimals differentiated and formed metallic cores like the larger terrestrial planets, the parent bodies of undifferentiated chondritic meteorites experienced comparatively mild thermal metamorphism that was insufficient to separate metal from silicate. There is debate about the nature of the heat source as well as the structure and cooling history of the parent bodies. Here we report a study of 244Pu fission-track and 40Ar-39Ar thermochronologies of unshocked H chondrites, which are presumed to have a common, single, parent body. We show that, after fast accretion, an internal heating source (most probably 26Al decay) resulted in a layered parent body that cooled relatively undisturbed: rocks in the outer shells reached lower maximum metamorphic temperatures and cooled faster than the more recrystallized and chemically equilibrated rocks from the centre, which needed approximately 160 Myr to reach 390K.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature01499DOI Listing

Publication Analysis

Top Keywords

structure thermal
4
thermal history
4
history h-chondrite
4
h-chondrite parent
4
parent asteroid
4
asteroid revealed
4
revealed thermochronometry
4
thermochronometry solar
4
solar system
4
system formed
4

Similar Publications

Context: DNAN/DNB cocrystals, as a newly developed type of energetic material, possess superior safety and thermal stability, making them a suitable alternative to traditional melt-cast explosives. Nonetheless, an exploration of the thermal degradation dynamics of the said cocrystal composite has heretofore remained uncharted. Consequently, we engaged the ReaxFF/lg force field modality to delve into the thermal dissociation processes of the DNAN/DNB cocrystal assembly across a spectrum of temperatures, encompassing 2500, 2750, 3000, 3250, and 3500 K.

View Article and Find Full Text PDF

Thermophysical properties of graphene reinforced with polymethyl methacrylate nanoparticles for technological applications: a molecular model.

J Mol Model

January 2025

Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.

Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).

View Article and Find Full Text PDF

Guest-Molecule-Induced Glass-Crystal Transition in Organic-Inorganic Hybrid Antimony Halides.

Inorg Chem

January 2025

College of Chemistry and Materials Science, College of Environmental and Resource Sciences, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China.

The glassy state of inorganic-organic hybrid metal halides combines their excellent optoelectronic properties with the outstanding processability of glass, showcasing unique application potential in solar devices, display technologies, and plastic electronics. Herein, by tailoring the organic cation from -phenylpiperazine to dimethylamine gradually, four types of zero-dimensional antimony halides are obtained with various optical and thermal properties. The guest water molecules in crystal (-phenylpiperazine)SbCl·Cl·5HO lead to the largest distortion of the Sb-halogen unit, resulting in the red emission different from the yellow emission of other compounds.

View Article and Find Full Text PDF

Heterogeneous fault architecture affects crustal seismotectonics and fluid migration. When studying it, we commonly rely on static conceptual models that generally overlook the absolute time dimension of fault (re)activation. Heterogenous faults, however, represent the end-result of protracted, cumulative and intricate deformation histories.

View Article and Find Full Text PDF

Solar-driven interfacial evaporation technology is regarded as a promising strategy for global freshwater shortage owing to its green and sustainable desalination process. Graphene aerogel (GA) is widely utilized in the design of solar-driven steam generation systems due to its excellent photothermal conversion efficiency and broad spectral absorption. Given the significant impact of hydrophilicity and thermal insulation on the performance of evaporators, nitrogen doping in the graphene structure not only effectively enhances its wettability but also allows for moderate tuning of its thermal conductivity, thereby optimizing the overall performance of the evaporator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!