Electrical membrane activity and intracellular calcium buffering control exocytosis efficiency in Xenopus melanotrope cells.

Neuroendocrinology

Department of Cellular Animal Physiology, Institute of Cellular Signalling and Nijmegen Institute for Neurosciences, University of Nijmegen, Nijmegen, The Netherlands.

Published: March 2003

In neural and neuroendocrine cells, Ca(2+) influx is essential for exocytosis. Ca(2+) influx takes place through electrical membrane activity, which often occurs in bursts of action potentials that lead to intracellular Ca(2+) oscillations. Cytoplasmic Ca(2+) buffers and intracellular Ca(2+) stores are involved in the propagation of the oscillations through the cell. Studies focused on action potential bursts with a high frequency up to 20 Hz indicate that, depending on the cell type under investigation, bursts either enhance or reduce exocytosis efficiency. In many cell types, the bursting frequency can be as low as 1 Hz, although no information is present on whether this influences exocytosis efficiency. The present study addresses the role of low-frequency bursts around 1 Hz and cytoplasmic Ca(2+) buffering in the regulation of exocytosis efficiency, using neuroendocrine melanotrope cells of the amphibian Xenopus laevis. Exocytosis efficiency was determined by membrane capacitance measurements. Mimicking the bursting activity of 1 Hz (typical for this cell type) by repetitive depolarizing pulses enhanced exocytosis efficiency by 58% compared to application of only one single depolarizing pulse. This increase appears to be particularly due to a small number of distinct depolarizing pulses within a burst. Including the fast Ca(2+) buffer BAPTA in the intracellular solution reduced exocytosis efficiency by 60% in the first part of a burst, whereas during the later part of the burst, stimulation (+50%) took place. We conclude that low-frequency bursting in the Xenopus melanotrope cell strongly promotes exocytosis efficiency and that this efficiency also depends on the capacity of the cytoplasm to buffer the intracellular Ca(2+) signal; strong Ca(2+) buffering during a short burst will decrease exocytosis efficiency, whereas with prolonged bursts, buffering capacity will be overcome, leading to Ca(2+) accumulation and thus enhanced exocytosis efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000069506DOI Listing

Publication Analysis

Top Keywords

exocytosis efficiency
40
intracellular ca2+
12
exocytosis
11
efficiency
11
ca2+
10
electrical membrane
8
membrane activity
8
xenopus melanotrope
8
melanotrope cells
8
ca2+ influx
8

Similar Publications

Iron improves the antiviral activity of NK cells.

Front Immunol

January 2025

Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.

Natural killer (NK) cells are innate immune cells that play a crucial role as a first line of defense against viral infections and tumor development. Iron is an essential nutrient for immune cells, but it can also pose biochemical risks such as the production of reactive oxygen species. The importance of iron for the NK cell function has gained increasing recognition.

View Article and Find Full Text PDF

The Exocyst Subunits EqSec5 and EqSec6 Promote Powdery Mildew Fungus Growth and Pathogenicity.

J Fungi (Basel)

January 2025

Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Haikou 570228, China.

The exocyst complex in eukaryotic cells modulates secretory vesicle transportation to promote exocytosis. The exocyst is also required for the hyphal growth and pathogenic development of several filamentous phytopathogens. Obligate biotrophic powdery mildew fungi cause considerable damage to many cash crops; however, the exocyst's roles in this group of fungi is not well studied.

View Article and Find Full Text PDF

Merestinib inhibits cuproptosis by targeting NRF2 to alleviate acute liver injury.

Free Radic Biol Med

January 2025

Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China. Electronic address:

The emergence of cuproptosis, a novel form of regulated cell death, is induced by an excess of copper ions and has been associated with the progression of multiple diseases, including liver injury, cardiovascular disease, and neurodegenerative disorders. However, there are currently no inhibitors available for targeting specific cuproptosis-related pathways in therapy. Here, the compound merestinib (MTB) has been identified as a strong inhibitor of cuproptosis through screening of a kinase inhibitor library.

View Article and Find Full Text PDF

Dual Strategies Based on Golgi Apparatus/Endoplasmic Reticulum Targeting and Anchoring for High-Efficiency siRNA Delivery and Tumor RNAi Therapy.

ACS Nano

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.

Endolysosomal degradation of small interfering RNA (siRNA) significantly reduces the efficacy of RNA interference (RNAi) delivered by nonviral systems. Leveraging Golgi apparatus/endoplasmic reticulum (Golgi/ER) transport can help siRNA bypass the endolysosomal degradation pathway, but this approach may also result in insufficient siRNA release and an increased risk of Golgi/ER-mediated exocytosis. To address these challenges, we developed two distinct strategies using a nanocomplex of cell-penetrating poly(disulfide)s and chondroitin sulfate, which enhances targeted internalization, Golgi transport, and rapid cytoplasmic release of loaded siRNA.

View Article and Find Full Text PDF

The tympanic membrane forms an impenetrable barrier between the ear canal and the air-filled middle ear, protecting it from fluid, pathogens, and foreign material entry. We previously screened a phage display library and discovered peptides that mediate transport across the intact membrane. The route by which transport occurs is not certain, but possibilities include paracellular transport through loosened intercellular junctions and transcellular transport through the cells that comprise the various tympanic membrane layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!