Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Attention-deficit hyperactivity disorder (ADHD) is characterized by the overt symptoms of impulsiveness, hyperactivity, and inattention. A frontostriatal pathophysiology has been hypothesized to produce these symptoms and lead to reduced ability to inhibit unnecessary or inappropriate behavioral responses. Oculomotor tasks can be designed to probe the ability of subjects to generate or inhibit reflexive and voluntary responses. Because regions of the frontal cortex and basal ganglia have been identified in the control of voluntary responses and saccadic suppression, we hypothesized that children and adults diagnosed with ADHD may have specific difficulties in oculomotor tasks requiring the suppression of reflexive or unwanted saccadic eye movements. To test this hypothesis, we measured eye movement performance in pro- and anti-saccade tasks of 114 ADHD and 180 control participants ranging in age from 6 to 59 yr. In the pro-saccade task, participants were instructed to look from a central fixation point toward an eccentric visual target. In the anti-saccade task, stimulus presentation was identical, but participants were instructed to suppress the saccade to the stimulus and instead look from the central fixation point to the side opposite the target. The state of fixation was manipulated by presenting the target either when the central fixation point was illuminated (overlap condition) or at some time after it disappeared (gap condition). In the pro-saccade task, ADHD participants had longer reaction times, greater intra-subject variance, and their saccades had reduced peak velocities and increased durations. In the anti-saccade task, ADHD participants had greater difficulty suppressing reflexive pro-saccades toward the eccentric target, increased reaction times for correct anti-saccades, and greater intra-subject variance. In a third task requiring prolonged fixation, ADHD participants generated more intrusive saccades during periods when they were required to maintain steady fixation. The results suggest that ADHD participants have reduced ability to suppress unwanted saccades and control their fixation behavior voluntarily, a finding that is consistent with a fronto-striatal pathophysiology. The findings are discussed in the context of recent neurophysiological data from nonhuman primates that have identified important control signals for saccade suppression that emanate from frontostriatal circuits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00192.2003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!