3-Hydroxyanthranilic acid 3,4-dioxygenase (EC 1.13.11.6; HADO) was purified to homogeneity from beef liver with the use of two dye columns (Cibacron Blue and Reactive Green 19) and hydroxyapatite. Two active peaks of enzyme were isolated from the hydroxyapatite column or by nondenaturing chromatofocusing of the enzyme prior to hydroxyapatite. The two active forms moved with different electrophoretic mobilities when they were subjected to nondenaturing polyacrylamide gel electrophoresis, regardless of the method of isolation. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), however, these species had apparently identical mobilities and have, therefore, close molecular mass. Analysis by matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry gave them a molecular mass of 32566 and 32515 Da, respectively, for the species with apparent pI values of 5.60 and 4.98, respectively, suggesting that they differ only in the presence or absence of the iron cofactor. The N-terminal group appears to be blocked as no amino-terminal sequence was possible from direct Edman degradation. A new inactivator of the enzyme, 6-chloro-3-hydroxyanthranilic acid, was synthesized and was shown to exhibit time-dependent inactivation. A possible mechanism for inactivation is proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1357-2725(02)00347-3 | DOI Listing |
Transl Oncol
February 2025
Shanghai Ninth People's Hospital, Department of Clinical Laboratory medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China. Electronic address:
Objectives: The specific role of 3-hydroxyanthranilic acid(3-HAA) in oral squamous cell carcinoma (OSCC) remains unclear. This study investigated the roles of 3-HAA in OSCC and the underlying mechanism.
Materials And Methods: The effects of 3-HAA on OSCC were examined using CCK-8, colony formation, EdU incorporation assays and xenograft mouse model.
J Biosci Bioeng
January 2025
Industrial Technology Innovation Center of Ibaraki Prefecture, 3781 Nagaoka, Ibaraki-machi, Higashiibaraki-gun, Ibaraki 311-3195, Japan. Electronic address:
Sake brewed using the kimoto-style exhibits high antioxidant capacity and is expected to inhibit the deterioration of sake quality due to oxidation. However, the antioxidant capacity of the added lactic acid bacteria has not been explored. We aimed to screen the lactic acid bacterium, Leuconostoc mesenteroides, with excellent brewing and antioxidant capacity, to develop sake with high antioxidant capacity.
View Article and Find Full Text PDFAm J Gastroenterol
December 2024
Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China.
Introduction: Transcutaneous auricular vagus nerve stimulation (taVNS) is a promising therapy for irritable bowel syndrome (IBS). The aims of this clinical trial were to evaluate the influence of taVNS on autonomic functions, rectal sensation, and acetylcholine (Ach) levels and to explore potential mechanisms involving gut microbiota and metabolic profiles.
Methods: This study was a single-center, single-blind, randomized controlled trial executed at the First Affiliated Hospital of USTC, Anhui, China.
Cell Signal
December 2024
Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China. Electronic address:
Background: Gastric cancer (GC) is among the most malignant tumors, with the lowest five-year survival rate, and limited treatment options. Kynureninase (KYNU), is a key molecule in tryptophan metabolism and promotes tumor progression and immunosuppression. Cuproptosis is a non-apoptotic cell death mechanism, primarily due to oxidative stress caused by copper ion accumulation, that is related to tumor progression and drug resistance.
View Article and Find Full Text PDFCNS Neurosci Ther
December 2024
Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, People's Republic of China.
Aims: Chronic hypobaric hypoxia frequently results in memory deficits, with severe cases showing marked alterations in dopamine levels and its metabolites. This research explores caffeine's modulation of the adenosine AA receptor (AAR) and its regulatory effects on tyrosine hydroxylase (TH), aiming to restore dopamine homeostasis and mitigate memory impairments associated with hypoxia. The goal is to identify novel preventive strategies against cognitive decline induced by hypoxia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!