A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A model for predicting likely sites of CYP3A4-mediated metabolism on drug-like molecules. | LitMetric

A model for predicting likely sites of CYP3A4-mediated metabolism on drug-like molecules.

J Med Chem

Department of Molecular Systems Merck Research Laboratories, 126 E. Lincoln Avenue, RY50SW-100, Rahway, New Jersey 07065-0900, USA.

Published: April 2003

We have developed a rapid semiquantitative model for evaluating the relative susceptibilities of different sites on drug molecules to metabolism by cytochrome P450 3A4. The model is based on the energy necessary to remove a hydrogen radical from each site, plus the surface area exposure of the hydrogen atom. The energy of hydrogen radical abstraction is conventionally measured by AM1 semiempirical molecular orbital calculations. AM1 calculations show the following order of radical stabilities for the hydrogen atom abstractions: sp2 centers > heteroatom sp3 centers > carbon sp3 centers. Since AM1 calculations are too time intensive for routine work, we developed a statistical trend vector model, which is used to estimate the AM1 abstraction energy of a hydrogen atom from its local atomic environment. We carried out AM1 and trend vector calculations on 50 CYP3A4 substrates whose major sites of metabolism are known in the literature. A plot of the lowest hydrogen radical formation energy versus its sterically accessible surface area exposure for these 50 substrates shows that only those hydrogen atoms with solvent accessible surface area exposure > or = 8.0 A(2) are susceptible to CYP3A4-mediated metabolism. This approach forms the basis for our general model, which predicts sites on drugs that are susceptible to cytochrome P450 3A4-mediated hydrogen radical abstraction followed by a hydroxylation reaction. This model, in conjunction with specific enzyme site binding requirements, can aid in identifying possible sites of metabolism catalyzed by other cytochrome P450 enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm020400sDOI Listing

Publication Analysis

Top Keywords

hydrogen radical
16
cytochrome p450
12
surface area
12
area exposure
12
hydrogen atom
12
cyp3a4-mediated metabolism
8
hydrogen
8
energy hydrogen
8
radical abstraction
8
am1 calculations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!