Modelling brain diseases in mice: the challenges of design and analysis.

Nat Rev Genet

Department of Molecular and Human Genetics and Howard Hughes Medical Institute, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA.

Published: April 2003

Genetically engineered mice have been generated to model a variety of neurological disorders. Several of these models have provided valuable insights into the pathogenesis of the relevant diseases; however, they have rarely reproduced all, or even most, of the features observed in the corresponding human conditions. Here, we review the challenges that must be faced when attempting to accurately reproduce human brain disorders in mice, and discuss some of the ways to overcome them. Building on the knowledge gathered from the study of existing mutants, and on recent progress in phenotyping mutant mice, we anticipate better methods for preclinical interventional trials and significant advances in the understanding and treatment of neurological diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nrg1045DOI Listing

Publication Analysis

Top Keywords

modelling brain
4
brain diseases
4
mice
4
diseases mice
4
mice challenges
4
challenges design
4
design analysis
4
analysis genetically
4
genetically engineered
4
engineered mice
4

Similar Publications

Protocol for investigating astrocytic mitochondria in neurons of adult mice using two-photon microscopy.

STAR Protoc

January 2025

Department of Neurosurgery, the First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China. Electronic address:

Under pathological conditions, astrocytes can transfer mitochondria to neurons, where they exert neuroprotective effects. In this context, we present a protocol for capturing astrocytic mitochondria in neurons of adult mice using a two-photon microscope. We describe an approach for constructing a mouse model with combined labeling of astrocytic mitochondria and neurons.

View Article and Find Full Text PDF

Recently, exposure to sounds with ultrasound (US) components has been shown to modulate brain activity. However, the effects of US on emotional states remain poorly understood. We previously demonstrated that the olfactory bulbectomized (OBX) rat depression model is suitable for examining the effects of audible sounds on emotionality.

View Article and Find Full Text PDF

We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.

View Article and Find Full Text PDF

Previous studies have shown that astrocyte activation in the anterior cingulate cortex (ACC), accompanied by upregulation of the astrocyte marker S100 calcium binding protein B (S100B), contributes to comorbid anxiety in chronic inflammatory pain (CIP), but the exact downstream mechanism is still being explored. The receptor for advanced glycation end-products (RAGE) plays an important role in chronic pain and psychosis by recognizing ligands, including S100B. Therefore, we speculate that RAGE may be involved in astrocyte regulation of the comorbidity between CIP and anxiety by recognizing S100B.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!