To examine the regeneration capacity of dorsal septohippocampal neurons in the presence of an artificial growth-promoting substrate, biocompatible polymeric hydrogels were implanted between the septum and the hippocampus in a fimbria-fornix lesion cavity. Unmodified (control) or aminosugar-containing (glucosamines or N-acetyl-glucosamines) hydrogels were implanted immediately or ten days after the lesions. Six months later, brain sections were processed for cresyl-violet, acetylcholinesterase, and immunocytochemical (glial fibrillary acidic protein, protein S100, neurofilaments, laminin, fibronectin) staining. All hydrogels were well integrated in the brain, constituting a stable bridge between the septum and the hippocampus. Weak gliosis occasionally surrounded the hydrogel in rats from the immediate-implantation group, whereas a more pronounced gliosis was observed in those from the delayed-implantation group. The hydrogels contained blood vessels and were invaded by host cells including astrocytes. Astrocytes formed a loose tissue network filling the porous structure of the hydrogels. Within the hydrogels, laminin-, fibronectin- or neurofilaments-immunopositive networks were also observed. Moreover, numerous acetylcholinesterase-positive fibers penetrated into the hydrogels from the septal, cortical and striatal areas. Fibre penetration was most important in the N-acetylglucosamines-containing hydrogels. Despite these features, the hippocampus failed to show any increase of acetylcholinesterase-staining as compared to that seen in lesion-only rats. These results confirm the regeneration capacity of severed septohippocampal neurons into polymeric substrates used as a bridge inserted in a fimbria-fornix lesion cavity. As such, biomaterials might be of clinical interest not only in the case of spinal cord sections, but also in cases of brain trauma.
Download full-text PDF |
Source |
---|
Brain Struct Funct
December 2024
Groupe d'Imagerie Neurofonctionelle, Institut des Maladies Neurodegeneratives-UMR 5293, CNRS CEA University of Bordeaux, Bordeaux, 33076, France.
Limb apraxia is a higher-order motor disorder often occurring post-stroke, which affects skilled actions. It is assessed through tasks involving gesture production or pantomime, recognition, meaningless gesture imitation, complex figure drawing, single and multi-object use. A two-system model for the organisation of actions hypothesizes distinct pathways mediating praxis deficits via conceptual, 'indirect', and perceptual 'direct' routes to action.
View Article and Find Full Text PDFWorld Neurosurg
September 2024
Department of Neurosurgery, Banner University Medical Center, Phoenix, Arizona, USA.
Colloid cysts are nonneoplastic epithelial lesions arising from the roof of the third ventricle near the foramen of Monro. They comprise approximately 0.5% to 2% of all brain lesions.
View Article and Find Full Text PDFBackground The aim of this study is to evaluate the clinical and radiological findings of metastatic tumors and primary brain tumors affecting the fornix. Methods Between January 2015 and March 2023, we retrospectively evaluated 1087 patients of both sexes who underwent cranial magnetic resonance imaging (MRI) for a preliminary diagnosis of intracranial malignancy in the radiology department of our hospital. Two radiologists with six and 10 years of experience in MRI examination assessed the relationship between primary and metastatic tumors and the fornix.
View Article and Find Full Text PDFUltrasound Med Biol
June 2024
Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Department of Neurosurgery, Brigham & Women's Hospital & Harvard Medical School, Boston, MA, USA.
Objective: High-intensity magnetic resonance-guided focused ultrasound (MRgFUS) is a non-invasive therapy to lesion brain tissue, used clinically in patients and pre-clinically in several animal models. Challenges with focused ablation in rodent brains can include skull and near-field heating and accurately targeting small and deep brain structures. We overcame these challenges by creating a novel method consisting of a craniectomy skull preparation, a high-frequency transducer (3 MHz) with a small ultrasound focal spot, a transducer positioning system with an added manual adjustment of ∼0.
View Article and Find Full Text PDFFront Neurol
January 2024
Department of Emergency Neurology and Stroke Unit, IRCCS Fondazione Mondino, Pavia, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!