Background: Latent genetic instability has been associated with an increased risk for several cancers. We used the comet assay (single-cell gel electrophoresis) to assess whether genetic instability, as reflected by susceptibility to DNA damage, was associated with the risk of bladder cancer in a case-control study.
Methods: We used the comet assay to measure baseline and benzo[a]pyrene diol epoxide (BPDE)- and gamma-radiation-induced DNA damage in individual peripheral blood lymphocytes from 114 incident case patients with bladder cancer and 145 matched healthy control subjects. All subjects provided personal information, including smoking history. DNA damage was visualized with the comet assay and quantified by the Olive tail moment parameter, a relative measure. Multivariable analysis was used to assess relative risks for bladder cancer associated with DNA damage. All statistical tests were two-sided.
Results: Baseline levels of DNA damage were statistically significantly higher in case patients (tail moment = 1.40) than in control subjects (tail moment = 1.21) (difference = 0.19, 95% confidence interval [CI] = 0.04 to 0.32; P =.015), as were gamma-radiation-induced (tail moment = 4.76 versus 4.22; difference = 0.54, 95% CI = 0.11 to 0.96; P =.013) and BPDE-induced (tail moment = 4.06 versus 3.45; difference = 0.61, 95% CI = 0.23 to 0.99; P =.002) DNA damage. When data were dichotomized at the median value for DNA damage in control subjects and adjusted for age, sex, ethnicity, and smoking status, an increased estimated relative risk of bladder cancer was statistically significantly associated with DNA damage at baseline (odds ratio [OR] = 1.84, 95% CI = 1.07 to 3.15) and after gamma-radiation (OR = 1.81, 95% CI = 1.04 to 3.14) but not after BPDE treatment (OR = 1.69, 95% CI = 0.98 to 2.93).
Conclusion: Latent genetic instability as measured by the comet assay is associated with an increased estimated relative risk of bladder cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jnci/95.7.540 | DOI Listing |
Chem Biodivers
January 2025
Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
Here, we report a synthesis of fluoroquinolones carrying a monoterpene moiety at the C7 position of aromatic structure. The minimal inhibitory concentrations of fluoroquinolone fused with trans-3-hydroxy-cis-myrtanylamine 18 against Staphylococcus aureus (MSSA isolates) were two- to eightfold lower compared to moxifloxacin, although fourfold higher against MRSA isolates. The fluoroquinolone fused with (-)-nopylamine 16 was four- to eightfold less active on MSSA compared to moxifloxacin, while had similar activity on MRSA.
View Article and Find Full Text PDFSci Rep
January 2025
NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
Identifying novel targets for molecular radiosensitization is critical for improving the efficacy of colorectal cancer (CRC) radiotherapy. Alpha-thalassemia/mental retardation X-linked (ATRX), a member of the SWI/SNF-like chromatin remodeling protein family, functions in the maintenance of genomic integrity and the regulation of apoptosis and senescence. However, whether ATRX is directly involved in the radiosensitivity of CRC remains unclear.
View Article and Find Full Text PDFGenomics
January 2025
Department of Clinical Laboratory of Sir Run-Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China. Electronic address:
X-ray irradiation induces widespread changes in gene expression. Positioned at the bottom of the central dogma, translational regulation responds swiftly to environmental stimuli, fine-tuning protein levels. However, the global view of mRNA translation following X-ray exposure remains unclear.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China; Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan, China. Electronic address:
Background: Lung squamous cell carcinoma (LUSC) is a significant health concern, characterized by a lack of specific therapies and limited treatment options for patients in advanced stages. This study aims to identify key molecules of prognostic importance in LUSC and provide an experimental foundation for their potential therapeutic applications.
Methods: Immune-related transcriptome expression analysis was performed on LUSC samples using the NanoString digital gene analysis system to develop a prognostic transcriptomic signature.
J Hazard Mater
December 2024
College of Life Science, Henan Normal University, Xinxiang 453007, China. Electronic address:
The widespread application of quantum dots (QDs) in recent years has raised concerns about potential environmental and human health risks. Although the toxicity of cadmium telluride quantum dots (CdTe QDs) has been partially studied, their effects on stem cells, tissue regeneration, neurodevelopment, and neurobehavioral toxicity remain unclear. This study aimed to investigate the combined toxic effects and mechanisms of CdTe QDs on planarians at the individual, tissue, cellular, and molecular levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!