High glucose-induced oxidative stress causes apoptosis in proximal tubular epithelial cells and is mediated by multiple caspases.

FASEB J

Department of Experimental Medicine and Nephrology, William Harvey Research Institute, St Bartholomew's and Royal London School of Medicine and Dentistry, Queen Mary, University of London, UK.

Published: May 2003

Diabetic nephropathy is the leading cause of end-stage renal disease in the Western world. Poor glycemic control contributes to the development of diabetic nephropathy, but the mechanisms underlying high glucose-induced tissue injury are not fully understood. In the present study, the effect of high glucose on a proximal tubular epithelial cell (PTEC) line was investigated. Reactive oxygen species (ROS) were detected using the fluorescent probes dichlorofluorescein diacetate, dihydrorhodamine 123, and 2,3-diaminonapthalene. Peroxynitrite (ONOO-) generation and nitrite concentrations were increased after 24 h of high glucose treatment (P<0.05). LLC-PK1 cells exposed to high D-glucose (25 mM) for up to 48 h had increased DNA fragmentation (P<0.01), caspase-3 activity (P<0.001), and annexin-V staining (P<0.05) as well as decreased expression of XIAP when compared with controls (5 mM D-glucose). The ONOO- scavenger ebselen reduced DNA fragmentation and caspase-3 activity as well as the high glucose-induced nitrite production and DCF fluorescence. High glucose-induced DNA fragmentation was completely prevented by an inhibitor of caspase-3 (P<0.01) and a pan-caspase inhibitor (P<0.001). Caspase inhibition did not affect ROS generation. This study, in a PTEC line, demonstrates that high glucose causes the generation of ONOO-, leading to caspase-mediated apoptosis. Ebselen and a caspase-3 inhibitor provided significant protection against high glucose-mediated apoptosis, implicating ONOO- as a proapoptotic ROS in early diabetic nephropathy.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.02-0130fjeDOI Listing

Publication Analysis

Top Keywords

high glucose-induced
8
proximal tubular
8
tubular epithelial
8
diabetic nephropathy
8
high glucose
8
high
4
glucose-induced oxidative
4
oxidative stress
4
stress apoptosis
4
apoptosis proximal
4

Similar Publications

Type 2 Diabetes Induces Mitochondrial Dysfunction in Zebrafish Skeletal Muscle Leading to Diabetic Myopathy via the miR-139-5p/NAMPT Pathway.

Int J Mol Sci

January 2025

State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha 410012, China.

Type 2 diabetes mellitus (T2DM) is a common metabolic disease that is frequently accompanied by multiple complications, including diabetic myopathy, a muscle disorder that is mainly manifested as decreased muscle function and reduced muscle mass. Diabetic myopathy is a relatively common complication among patients with diabetes that is mainly attributed to mitochondrial dysfunction. Therefore, we investigated the mechanisms underlying diabetic myopathy development, focusing on the role of microRNAs (miRs).

View Article and Find Full Text PDF

Microalbuminuria is the earliest clinical abnormality in diabetic kidney disease. High glucose (HG) concentrations are associated with the induction of oxidative stress in podocytes, leading to disruption of the glomerular filtration barrier. Our recent study revealed a significant decrease in the membrane-bound fraction of Klotho in podocytes that were cultured under HG conditions.

View Article and Find Full Text PDF

L-Theanine Extends the Lifespan of by Reducing the End Products of Advanced Glycosylation.

Foods

January 2025

Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China.

L-theanine, a non-protein amino acid naturally occurring in tea leaves, is recognized for its antioxidant, anti-inflammatory, and neuroprotective properties. Despite its known benefits, the mechanisms by which L-theanine influences lifespan extension remain poorly understood. This study investigated the effects of L-theanine on the lifespan of and explored the underlying mechanisms.

View Article and Find Full Text PDF

The impact of islet neuronal nitric oxide synthase (nNOS) on glucose-stimulated insulin secretion (GSIS) is less understood. We investigated this issue by performing simultaneous measurements of the activity of nNOS versus inducible NOS (iNOS) in GSIS using isolated murine islets. Additionally, the significance of extracellular NO on GSIS was studied.

View Article and Find Full Text PDF

Low-dose quinine targets KCNH6 to potentiate glucose-induced insulin secretion.

J Mol Cell Biol

January 2025

Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.

Insulin secretion is mainly regulated by two electrophysiological events, depolarization initiated by the closure of ATP-sensitive K+ (KATP) channels and repolarization mediated by K+ efflux. Quinine, a natural component commonly used for the treatment of malaria, has been reported to directly stimulate insulin release and lead to hypoglycemia in patients during treatment through inhibiting KATP channels. In this study, we verified the insulinotropic effect of quinine on the isolated mouse pancreatic islets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!