A central role for the nuclear factor-kappaB pathway in anti-inflammatory and proinflammatory actions of mechanical strain.

FASEB J

McGowen Institute of Regenerative, 589 Salk Hall, University of Pittsburgh, 3501 Terrace St., Pittsburgh, Pennsylvania 15261-1964, USA.

Published: May 2003

Mechanical signals play an integral role in bone homeostasis. These signals are observed at the interface of bone and teeth, where osteoblast-like periodontal ligament (PDL) cells constantly take part in bone formation and resorption in response to applied mechanical forces. Earlier, we reported that signals generated by tensile strain of low magnitude (TENS-L) are antiinflammatory, whereas tensile strain of high magnitude (TENS-H) is proinflammatory and catabolic. In this study, we examined the mechanisms of intracellular actions of the antiinflammatory and proinflammatory signals generated by TENS of various magnitudes. We show that both low and high magnitudes of mechanical strain exploit nuclear factor (NF)-kappaB as a common pathway for transcriptional inhibition/activation of proinflammatory genes and catabolic processes. TENS-L is a potent inhibitor of interleukin (IL)-1 beta-induced I-kappaBbeta degradation and prevents dissociation of NF-kB from cytoplasmic complexes and thus its nuclear translocation. This leads to sustained suppression of IL-1beta-induced NF-kappaB transcriptional regulation of proinflammatory genes. In contrast, TENS-H is a proinflammatory signal that induces I-kappaBbeta degradation, nuclear translocation of NF-kappaB, and transcriptional activation of proinflammatory genes. These findings are the first to describe the largely unknown intracellular mechanism of action of applied tensile forces in osteoblast-like cells and have critical implications in bone remodeling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4955537PMC
http://dx.doi.org/10.1096/fj.02-0901fjeDOI Listing

Publication Analysis

Top Keywords

proinflammatory genes
12
mechanical strain
8
signals generated
8
tensile strain
8
tens-h proinflammatory
8
i-kappabbeta degradation
8
nuclear translocation
8
nf-kappab transcriptional
8
proinflammatory
7
central role
4

Similar Publications

During virus infection, the activation of the antiviral endoribonuclease, ribonuclease L (RNase L), by a unique ligand 2'-5'-oilgoadenylate (2-5A) causes the cleavage of single-stranded viral and cellular RNA targets, restricting protein synthesis, activating stress response pathways, and promoting cell death to establish broad antiviral effects. The immunostimulatory dsRNA cleavage products of RNase L activity (RL RNAs) recruit diverse dsRNA sensors to activate signaling pathways to amplify interferon (IFN) production and activate inflammasome, but the sensors that promote cell death are not known. In this study, we found that DEAH-box polypeptide 15 (DHX15) and retinoic acid-inducible gene I (Rig-I) are essential for apoptosis induced by RL RNAs and require mitochondrial antiviral signaling (MAVS), c-Jun amino terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) for caspase-3-mediated intrinsic apoptosis.

View Article and Find Full Text PDF

Horse Innate Immunity in the Control of Equine Infectious Anemia Virus Infection: A Preliminary Study.

Viruses

November 2024

Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy.

The mechanisms of the innate immunity control of equine infectious anemia virus in horses are not yet widely described. Equine monocytes isolated from the peripheral blood of three Equine infectious anemia (EIA) seronegative horses were differentiated in vitro into macrophages that gave rise to mixed cell populations morphologically referable to M1 and M2 phenotypes. The addition of two equine recombinant cytokines and two EIA virus reference strains, Miami and Wyoming, induced a more specific cell differentiation, and as for other species, IFNγ and IL4 stimulation polarized horse macrophages respectively towards the M1 and the M2 phenotypes.

View Article and Find Full Text PDF

The World Health Organization has classified air pollution as a carcinogen, and polycyclic aromatic hydrocarbons (PAHs) are major components of air particulates of carcinogenic concern. Thus far, most studies focused on genotoxic high molecular weight PAHs; however, recent studies indicate potential carcinogenicity of the non-genotoxic lower molecular weight PAHs (LMW PAHs) that are found in indoor and outdoor air pollution as well as secondhand cigarette smoke. We hypothesize that LMW PAHs contribute to the promotion stage of cancer when combined with benzo[]pyrene (B[]P), a legacy PAH.

View Article and Find Full Text PDF

Serotype D Infection Induces Activation of the IL-17 Signaling Pathway in Goat Lymphocytes.

Microorganisms

December 2024

Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Laboratory of Haikou, College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.

(1) Background: Pasteurellosis is a global zoonotic bacterial disease, which has caused significant economic impacts in animal husbandry. Nevertheless, there is limited understanding of the immune response between goat peripheral blood lymphocytes (PBLs) and goat-derived (). (2) Methods: To investigate the immune response of host PBLs during infection with type D, we established an cell model utilizing isolated primary goat PBLs.

View Article and Find Full Text PDF

(1) Background: This study evaluated the effects of BiotiQuest Sugar Shift, a novel probiotic formulation, for its impact on gut microbiome composition and metabolic health in type 2 diabetes mellitus (T2D). T2D is characterized by chronic inflammation and gut microbiome imbalances, yet the therapeutic potential of targeted probiotics remains underexplored. (2) Methods: In a 12-week randomized, double-blind, placebo-controlled trial, 64 adults with T2D received either Sugar Shift or placebo capsules twice daily.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!