Previously, inhibitors of CYP1A1 were rated as candidate chemopreventive agents against cancer mainly according to their effects on the 7-ethoxyresorufin O-deethylation (EROD) of diagnostic probe substrates. Surprisingly, several polyphenols including resveratrol, formerly identified as potent inhibitors by the EROD assay, exhibited no or weak inhibition of procarcinogen activation. We compared the effects of 11 representative natural polyphenols, which normally occur in food, on different activities of CYP1A1, namely epoxidation of 7,8-dihydrodiol-benzo[a]pyrene, the terminal step in the activation leading to the ultimate carcinogenic diolepoxides, hydroxylation of benzo[a]pyrene, and EROD. For the first time, a reconstituted system was used for the determination of IC(50) values, consisting of purified enzymes (human CYP1A1 and human NADPH-cytochrome P450 reductase) and dilaurylphosphatidylcholine. The results demonstrate that the inhibitory effects of dietary polyphenols on CYP1A1 activity depend on both the structure of the inhibitor and the type of the reaction and substrate used in the assay. Consequently, a potent EROD inhibition alone is insufficient to count a substance among the chemoprotective agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-291x(03)00435-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!