Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell.

Neuron

Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas (FORTH), Vassilica Vouton, PO Box 1527, GR 711 10 Heraklion, Crete, Greece.

Published: March 2003

AI Article Synopsis

  • Researchers created a model of CA1 pyramidal cells to better understand synaptic integration, using a variety of in vitro data.
  • They conducted experiments combining different measures and conditions, which revealed subthreshold responses to inputs that act as nonlinear sums from distinct dendritic branches.
  • The study highlights the importance of experimental design on the interpretation of synaptic arithmetic, pointing to the need for new experimental approaches and testable predictions.

Article Abstract

The rules of synaptic integration in pyramidal cells remain obscure, in part due to conflicting interpretations of existing experimental data. To clarify issues, we developed a CA1 pyramidal cell model calibrated with a broad spectrum of in vitro data. Using simultaneous dendritic and somatic recordings and combining results for two different response measures (peak versus mean EPSP), two different stimulus formats (single shock versus 50 Hz trains), and two different spatial integration conditions (within versus between-branch summation), we found that the cell's subthreshold responses to paired inputs are best described as a sum of nonlinear subunit responses, where the subunits correspond to different dendritic branches. In addition to suggesting a new type of experiment and providing testable predictions, our model shows how conclusions regarding synaptic arithmetic can be influenced by an array of seemingly innocuous experimental design choices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0896-6273(03)00148-xDOI Listing

Publication Analysis

Top Keywords

ca1 pyramidal
8
pyramidal cell
8
arithmetic subthreshold
4
subthreshold synaptic
4
synaptic summation
4
summation model
4
model ca1
4
cell rules
4
rules synaptic
4
synaptic integration
4

Similar Publications

Cannabis derivatives are among the most widely used psychoactive substances in the world, which leads to growing medical concerns regarding its chronic use and abuse especially among adolescents. Exposure to THC during formative years produces long-term behavioral alterations that share similarities with symptoms of psychiatric and neurodevelopmental disorders. In this study, we have analyzed the functional and molecular mechanisms that might underlie these alterations.

View Article and Find Full Text PDF
Article Synopsis
  • Variants associated with neurodevelopmental impairments in children are complex and challenging to evaluate due to their diverse nature and unclear causes.
  • The study highlights a case of a child with neonatal-onset epilepsy and a specific genetic variant (G256W) that impacts ion channel function and leads to reduced cell stability and conduction in nervous tissue.
  • The research also establishes a mouse model that exhibits epilepsy and hyperexcitability in brain cells, linking the genetic variant to observable neurological behaviors and suggesting potential wider implications for understanding similar conditions in other patients.
View Article and Find Full Text PDF

Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying CA1 PC differentiation and the development of this inhibitory circuit motif.

View Article and Find Full Text PDF

Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.

Chin J Traumatol

December 2024

Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China. Electronic address:

Purpose: To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.

Methods: This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method.

View Article and Find Full Text PDF

Endocytosis, required for the uptake of receptors and their ligands, can also introduce pathological aggregates such as α-synuclein (α-syn) in Parkinson's Disease. We show here the unexpected presence of intrinsically perforated endolysosomes in neurons, suggesting involvement in the genesis of toxic α-syn aggregates induced by internalized preformed fibrils (PFFs). Aggregation of endogenous α-syn in late endosomes and lysosomes of human iPSC-derived neurons (iNs), seeded by internalized α-syn PFFs, caused the death of the iNs but not of the parental iPSCs and non-neuronal cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!