Oscillatory growth of silica tubes in chemical gardens.

J Am Chem Soc

Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA.

Published: April 2003

We report distinct growth regimes of hollow silica fibers formed by hydrodynamic injection of cupric sulfate into silicate solution. The tubes grow either steadily along a continuous jet of buoyant solution or through relaxation oscillations that are governed by chemo-mechanical processes. The dependence of the oscillation period on flow rate and copper concentration is explained in the framework of a simple model. Tailored flow patterns allow the directional control of the tubes and their use as miniature connectors. Our findings are applicable to the understanding of chemical gardens, promise a wealth of nonlinear phenomena, and offer possible applications in microfluidics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0298343DOI Listing

Publication Analysis

Top Keywords

chemical gardens
8
oscillatory growth
4
growth silica
4
silica tubes
4
tubes chemical
4
gardens report
4
report distinct
4
distinct growth
4
growth regimes
4
regimes hollow
4

Similar Publications

The environmental impact of invasive species necessitates creating a strategy for managing their spread by utilising them as a source of potentially high-value raw materials. (Lam.) K.

View Article and Find Full Text PDF

Structure of Plant Populations in Constructed Wetlands and Their Ability for Water Purification.

Plants (Basel)

January 2025

Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.

In constructed wetlands (CWs) with multiple plant communities, population structure may change over time and these variations may ultimately influence water quality. However, in CWs with multiple plant communities, it is still unclear how population structure may change over time and how these variations ultimately influence water quality. Here, we established a CW featuring multiple plant species within a polder to investigate the variation in plant population structure and wastewater treatment effect for drainage water over the course of one year.

View Article and Find Full Text PDF

Many biologically active compounds have been identified in the mucus of the garden snail , which are effective in the treatment of several diseases such as cancer, ulcers, wounds, etc. The incorporation of these compounds into the green synthesis of copper nanoparticles (CuONPs-Muc) was demonstrated in our previous study. Based on the synergistic effect of two reducing agents- snail mucus and ascorbic acid (AsA)-on CuSO.

View Article and Find Full Text PDF

Background/objectives: Dartmoor Estate Tea plantation in Devon, UK, is renowned for its unique microclimate and varied soil conditions, which contribute to the distinctive flavours and chemical profiles of tea. The chemical diversity of fresh leaf samples from various garden locations was explored within the plantation.

Methods: Fresh leaf, which differed by location, cultivar, time of day, and variety, was analysed using Flow Infusion Electrospray Ionisation Mass Spectrometry (FIE-MS).

View Article and Find Full Text PDF

Glufosinate (GLUF) and glyphosate (GLY) are nonselective phosphorus-containing amino acid herbicides that are widely used in agricultural gardens and noncultivated areas. These herbicides give rise to a number of key metabolites, with 3-methyl phosphinicopropionic acid (MPPA), -acetyl glufosinate (-acetyl GLUF), aminomethyl phosphonic acid (AMPA), -acetyl aminomethyl phosphonic acid (-acetyl AMPA), -acetyl glyphosate (-acetyl GLY), -methyl glyphosate (-methyl GLY) as the major metabolites obtained from GLUF and GLY. Extensive use of these herbicides may lead to their increased presence in the environment, especially aquatic ecosystems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!