The purpose of this brief review is to describe and discuss some of the current analytic procedures including gas-chromatographic and alternative techniques for residual solvent testing. Residual solvents, or organic volatile impurities, are a potential toxic risk for pharmaceutic products and have been a concern of manufacturers for many years. Residual solvents have had official limits in the United States as set in USP XXV and by the FDA in 1997 and have been monitored by most pharmaceutical manufacturers extensively for more than two decades in both bulk and finished products. The chief method of analysis for residual solvents is gas chromatography, which is generally considered the preferred methodology. Sample introduction techniques include both static and dynamic headspace analysis, solid-phase microextraction, and direct injection of solution containing bulk drug substance or drug product into the gas chromatograph. Also, some alternative methodologies for residual solvent testing are discussed in this review. In conclusion, gas chromatograph-based procedures will continue to dominate residual solvent testing because of its specificity for identification of the solvent, but the use of alternative sample introduction techniques into a gas chromatograph will continue to expand in the near future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1022693516409 | DOI Listing |
Front Chem
December 2024
Circa Renewable Chemistry Institute, Department of Chemistry, University of York, York, United Kingdom.
This study focuses on the fabrication and characterisation of single-walled carbon nanotube (SWCNT) buckypapers and polyethersulfone (PES) flat-sheet membranes using Cyrene, aiming toevaluate its efficacy as a green solvent for these applications. Pristine SWCNTs were dispersed inCyrene without surfactants and compared to N-Methyl-2-pyrrolidone (NMP) dispersions. Buckypapers were fabricated from these dispersions and characterised using Scanning ElectronMicroscopy (SEM), Atomic Force Microscopy (AFM), and infrared spectroscopy.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
Org Biomol Chem
January 2025
State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.
The cycloaddition of CO to epoxide (CCE) reactions produce valuable cyclic carbonates useful in the electrolytes of lithium-ion batteries, as organic solvents, and in polymeric materials. However, halide-containing catalysts are predominantly used in these reactions, despite halides being notoriously corrosive to steel processing equipment and residual halides also having harmful effects. To eliminate the reliance on halides as cocatalyst in most CCE reactions, halide-free catalysts are highly desirable.
View Article and Find Full Text PDFJ Chromatogr A
December 2024
Technical University Dresden, Food Chemistry, Bergstraße 66, Dresden D-01069, Germany.
Current manual multi-methods for analysis of pesticides are limited due to their complexity and scope of pesticides, high demand for time and solvent or unsuitability for broad types of food of animal origin. The following research presents a novel automated sample preparation and purification method for various food matrices of animal origin, including milk, raw milk, dairy products, cheese, eggs, fish, fish products, and offal. The Ultra-Turrax® Tube Drive System enables quick fat extraction using a solvent mixture of cyclohexane/ethyl acetate/acetonitrile.
View Article and Find Full Text PDFJ Chem Inf Model
December 2024
Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa K1N 6N5, Canada.
Efficient computational screenings are integral to materials discovery in highly sought-after gas adsorption and storage applications, such as CO capture. Preprocessing techniques have been developed to render experimental crystal structures suitable for molecular simulations by mimicking experimental activation protocols, particularly residual solvent removal. Current accounts examining these preprocessed materials databases indicate the presence of assorted structural errors introduced by solvent removal and preprocessing, including improper elimination of charge-balancing ions and ligands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!