Phosphorothioate compounds are widely used in agriculture and public health for the control of unwanted pests. The phosphorothioate parathion was metabolised to the toxic metabolite paraoxon (0.038-0.683 nmol/min per mg protein) and p-nitrophenol (0.023-2.10 nmol/min per mg protein) by human liver microsomes ( n=27) in an NADPH-dependent reaction. There was a significant correlation ( P<0.02) between nifedipine oxidation and paraoxon formation from parathion (200 micro M) by human liver microsomes and with cytochrome P450 (CYP) 3A4/5 expression ( P<0.05), although not with midazolam 1'-hydroxylation or testosterone 6beta-hydroxylation. Paclitaxel 6'-hydroxylation and CYP2C8 expression correlated with paraoxon formation ( P<0.01), indicating CYP2C8 involvement. Of nine recombinant P450 isoforms, CYPs 3A4, 3A5, 1A2 and 2D6 activated parathion to paraoxon at the highest rates (6.5, 8.5, 5.7 and 6.2 pmol/pmol P450 per h) with K(m) values of 12.6, 2.7, 1.5 and 9.2 micro M, respectively. Similar K(m) values were seen with the human liver microsomes. These data indicate that CYP3A4/5 and CYP2C8, which constitute up to 40% of human liver P450s, are the most significant participants in the metabolism of parathion. However, several other isoforms could play an important role when CYP3A and CYP2C8 are poorly expressed due to environmental factors or the presence of a genetic polymorphism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00204-003-0452-0 | DOI Listing |
Iran J Kidney Dis
December 2024
Department of Health Sciences-Illness as an Individual Process, University Center of Tonala, University of Guadalajara, Guadalajara, Jalisco, Mexico.
Introduction: Protein-energy wasting (PEW) is highly prevalent among patients undergoing peritoneal dialysis (PD), and it has been proposed that oxidative stress (OS) may contribute to its pathogenesis. This study was an attempt to determine the association between the presence of PEW and OS levels in PD patients.
Methods: This analytical cross-sectional study involved 62 clinically stable PD patients aged ≥ 18 years, between September 2017 and July 2018.
Molecules
November 2024
Key Laboratory for Biodiversity Conservation in Karst Mountain Area of Southwestern China, National Foresty and Grassland Administration, Guiyang 550005, China.
Bibenzyl compounds are one of the most important bioactive components of natural medicine. However, as a traditional herbal medicine is rich in bibenzyl compounds and performs functions such as acting as an antioxidant, inhibiting cancer cell growth, and assisting in neuro-protection. The biosynthesis of bibenzyl products is regulated by bibenzyl synthase (BBS).
View Article and Find Full Text PDFGM Crops Food
December 2024
Regulatory Science, Bayer Crop Science, Chesterfield, MO, USA.
A transgenic protein is frequently expressed as different homologous variants in genetically modified crops due to differential processing of targeting peptides or optimization of activity and specificity. The aim of this study was to develop a science-based approach for risk assessment of homologous protein variants using dicamba mono-oxygenase (DMO) as a case study. In this study, DMO expressed in the next-generation dicamba-tolerant maize, sugar beet and soybean crops exhibited up to 27 amino acid sequence differences in the N-terminus.
View Article and Find Full Text PDFJ Agric Food Chem
November 2024
College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
The litchi genome has five anthocyanidin reductase () and two leucoanthocyanidin reductase () members. The high expression of and is significantly positively correlated with the abundant proanthocyanidins and (-)-epicatechin (EC) in the pericarp, leaf, root, etc. The recombinant LcANR1a/2a converts cyanidin to both EC and (+)-catechin (CT) (EC:CT ≈ 1:1) and converts delphindin to (+)-gallocatechin and (-)-epigallocatechin; the recombinant LcLAR1/2 converts leucocyanidin to CT.
View Article and Find Full Text PDFESC Heart Fail
October 2024
Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
Aims: Myocardial inflammation and impaired mitochondrial oxidative capacity are hallmarks of heart failure (HF) pathophysiology. The extent of myocardial inflammation in patients suffering from ischaemic cardiomyopathy (ICM) or dilated cardiomyopathy (DCM) and its association with mitochondrial energy metabolism are unknown. We aimed at establishing a relevant role of cardiac inflammation in the impairment of mitochondrial energy production in advanced ischaemic and non-ischaemic HF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!