The inner structure of fibrin fibres grown from fibrinogen solution activated by human alpha-thrombin was investigated by means of an Energy Dispersive X-ray Diffraction technique. The experiments show evidence for the well-characterized 22.5 nm repeat distance, which indicates the high order of protofibril arrangement in the longitudinal direction of fibres. The diffraction pattern also manifested a further pronounced peak at 18.1 nm (and its second order reflection at 18.1/ radical 2) demonstrating the existence in fibrin of a high degree of lateral order. The reported results directly confirm, on unperturbed wet samples, that protofibrils closely associate giving rise to a crystalline axial and equatorial packing according to the conclusions of the multibundle model.
Download full-text PDF |
Source |
---|
Lab Chip
January 2025
Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 1840 Entrepreneur Dr., Raleigh, NC, 27695 USA.
Blood coagulation is a highly regulated injury response that features polymerization of fibrin fibers to prevent the passage of blood from a damaged vascular endothelium. A growing body of research seeks to monitor coagulation in microfluidic systems but fails to capture coagulation as a response to disruption of the vascular endothelium. Here we present a device that allows compression injury of a defined segment of a microfluidic vascular endothelium and the assessment of coagulation at the injury site.
View Article and Find Full Text PDFJ Thromb Haemost
January 2025
Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.
Background: Blood clot formation, triggered by vascular injury, is crucial for haemostasis and thrombosis. Blood clots are composed mainly of fibrin fibres, platelets and red blood cells (RBCs). Recent studies show that clot surface also develops a fibrin film, which provides protection against wound infection and retains components such as RBCs within the clot.
View Article and Find Full Text PDFJ Mech Phys Solids
March 2025
School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA.
Thrombosis, when occurring undesirably, disrupts normal blood flow and poses significant medical challenges. As the skeleton of blood clots, fibrin fibers play a vital role in the formation and fragmentation of blood clots. Thus, studying the deformation and fracture characteristics of fibrin fiber networks is the key factor to solve a series of health problems caused by thrombosis.
View Article and Find Full Text PDFPLoS Comput Biol
December 2024
Department of Mathematics and Statistics, University of Central Oklahoma, Edmond, Oklahoma, United States of America.
Fibrinolysis, the plasmin-mediated degradation of the fibrin mesh that stabilizes blood clots, is an important physiological process, and understanding mechanisms underlying lysis is critical for improved stroke treatment. Experimentalists are now able to study lysis on the scale of single fibrin fibers, but mathematical models of lysis continue to focus mostly on fibrin network degradation. Experiments have shown that while some degradation occurs along the length of a fiber, ultimately the fiber is cleaved at a single location.
View Article and Find Full Text PDFRes Pract Thromb Haemost
November 2024
Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA.
Background: Anticoagulants prevent the formation of potentially fatal blood clots. Apixaban is a direct oral anticoagulant that inhibits factor (F)Xa, thereby impeding the conversion of prothrombin into thrombin and the formation of blood clots. Blood clots are held together by fibrin networks that must be broken down (fibrinolysis) to restore blood flow.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!