A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improvement of glycosylation in insect cells with mammalian glycosyltransferases. | LitMetric

The N-glycans of recombinant glycoproteins expressed in insect cells mainly contain high mannose or tri-mannose structures, which are truncated forms of the sialylated N-glycans found in mammalian cells. Because asialylated glycoproteins have a shorter half-life in blood circulation, we investigated if sialylated therapeutic glycoprotein can be produced from insect cells by enhancing the N-glycosylation machinery of the cells. We co-expressed in two insect cell lines, Sf9 and Ea4, the human alpha1-antitrypsin (halpha1AT) protein with a series of key glycosyltransferases, including GlcNAc transferase II (GnT2), beta1,4-galactosyltransferase (beta14GT), and alpha2,6-sialyltransferase (alpha26ST) by a single recombinant baculovirus. We demonstrated that the enhancement of N-glycosylation is cell type-dependent and is more efficient in Ea4 than Sf9 cells. Glycan analysis indicated that sialylated halpha1AT proteins were produced in Ea4 insect cells expressing the above-mentioned exogenous glycosyltransferases. Therefore, our expression strategy may simplify the production of humanized therapeutic glycoproteins by improving the N-glycosylation pathway in specific insect cells, with an ensemble of exogenous glycosyltransferases in a single recombinant baculovirus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0168-1656(02)00364-4DOI Listing

Publication Analysis

Top Keywords

insect cells
20
cells
8
single recombinant
8
recombinant baculovirus
8
exogenous glycosyltransferases
8
insect
6
improvement glycosylation
4
glycosylation insect
4
cells mammalian
4
glycosyltransferases
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!