Comparison of polyvinylidene fluoride and polyether sulfone membranes in filtering viral suspensions.

J Virol Methods

Department of Microbiology, Faculty of Biology, University of Barcelona, Diagonal 645, E-08028, Barcelona, Spain.

Published: April 2003

Low-protein-binding membranes with a pore size of 0.22 microm are used to filter aqueous solutions containing viruses. Virus adsorption to the membranes is avoided if they are made of polyvinylidene fluoride (PVDF) or if they are made of cellulose esters saturated with beef extract. Recently, a new kind of membrane filter made of polyether sulfone (PES) has become available commercially. The manufacturers claim that such membranes allow the filtration of greater volumes of sample than those made of PVDF. We compared the filtration rate and volume that could be filtered before clogging for these two membranes. The bacteriophage and enterovirus counts were then compared in sewage after filtration through the two membranes. There were no differences in virus recovery after filtration, but PES membranes allowed a higher filtration rate and clogged more slowly. The use of PES membranes is recommended.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0166-0934(03)00046-6DOI Listing

Publication Analysis

Top Keywords

polyvinylidene fluoride
8
polyether sulfone
8
membranes
8
filtration rate
8
pes membranes
8
filtration
5
comparison polyvinylidene
4
fluoride polyether
4
sulfone membranes
4
membranes filtering
4

Similar Publications

Fluoropolymer-Single Crystal Nanocomposite Based Transducer Fabrication for Bio-Imaging.

Adv Healthc Mater

January 2025

Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli, 140306, India.

Fluoropolymer alone, as an alternative to lead-based piezoelectric materials, has shown multiple challenges to develop useful sensors for solving real-world problems such as photoacoustic, ultrasound pulse echo, and other non-destructive testing. This work demonstrates the fabrication of high frequency and wide bandwidth transducers with fluoropolymer and highly polarizing cubic single crystal Barium titanate (BaTiO) ceramic composite for high resolution in-vivo photo-acoustic and ultrasound imaging. For transducer fabrication, a customized bio-compatible nanocomposite sensor film of PVDF-TrFE (Polyvinylidene fluoride trifluoroethylene)/BaTiO (BTO) is synthesized by drop and dry in heating-cum-electro-poling system for advancing polarization, crystallinity, and higher charge generation.

View Article and Find Full Text PDF

Measurement and spectral analysis of medical shock wave parameters based on flexible PVDF sensors.

Phys Eng Sci Med

January 2025

School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100191, China.

Extracorporeal shock wave therapy (ESWT) achieves its therapeutic purpose mainly through the biological effects produced by the interaction of shock waves with tissues, and the accurate measurement and calculation of the mechanical parameters of shock waves in tissues are of great significance in formulating the therapeutic strategy and evaluating the therapeutic effect. This study utilizes the approach of implanting flexible polyvinylidene fluoride (PVDF) vibration sensors inside the tissue-mimicking phantom of various thicknesses to capture waveforms at different depths during the impact process in real time. Parameters including positive and negative pressure changes (P, P), pulse wave rise time ([Formula: see text]), and energy flux density (EFD) are calculated, and frequency spectrum analysis of the waveforms is conducted.

View Article and Find Full Text PDF

This study focuses on the development of an efficient membrane-based clarification process to enhance the performance of subsequent ultrafiltration and produce high-quality sweet lime juice. A range of casting solutions were prepared using a blend of pore-forming polymers, including polyvinylpyrrolidone (PVP), polyvinylidene fluoride (PVDF), and cellulose acetate (CA), dissolved in dimethylformamide (DMF) solvent through the phase inversion technique. To further enhance the membrane's performance, four biopolymers poly (lactic acid) (PLA), xanthan gum, chitosan, and gelatin were incorporated, with and without clay, to refine its structure, porosity, and surface properties.

View Article and Find Full Text PDF

Amino acid crystals have emerged as promising piezoelectric materials for biodegradable and biocompatible sensors; however, their relatively low piezoelectric coefficients constrain practical applications. Here, we introduce a fluoro-substitution strategy to overcome this limitation and enhance the piezoelectric performance of amino acid crystals. Specifically, we substituted hydrogen atoms on the aromatic rings of L-tryptophan, L-phenylalanine, and N-Cbz-L-phenylalanine with fluorine, resulting in significantly elevated piezoelectric coefficients.

View Article and Find Full Text PDF

Quantum dot-polymer composites have the advantages of high luminescent quantum yield (PLQY), narrow emission half-peak full width (FWHM), and tunable emission spectra, and have broad application prospects in display and lighting fields. Research on quantum dots embedded in polymer films and plates has made great progress in both synthesis technology and optical properties. However, due to the shortcomings of quantum dots, such as cadmium selenide (CdSe), indium phosphide (InP), lead halide perovskite (LHP), poor water, oxygen, and light stability, and incapacity for large-scale synthesis, their practical application is still restricted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!