The rd mouse has been widely used as an animal model of retinitis pigmentosa. In this model, a mutation of rod-specific phosphodiesterase leads to a loss of rods during the early period of postnatal life. Morphological modifications at the level of the outer plexiform layer have been shown (Proc. Nat. Acad. Sci. USA 97 (2000) 11020) in bipolar and horizontal cells. However, very little is known about the functional changes suffered by these cells postsynaptic to the degenerated rods. In the present work we have studied the neurotransmitter-induced currents in rod bipolar cells from the rd mouse retina. Currents induced by glutamate and GABA were studied by the patch clamp-whole cell technique, on rod bipolar cells enzymatically dissociated from the rd mouse retina. Data from rd animals were compared with non-dystrophic NMRI mice. GABA (30-100 micro M) and glutamate (100 micro M) were applied from a puff pipette in the near proximity of rod bipolar cell dendrites, clamped at physiological membrane potentials, and their evoked currents were studied. In rod bipolar cells from non-dystrophic mouse, puff application of glutamate induced an outward current. This current was increased twofold in absence of extracellular calcium (nominally 0 calcium). In rod bipolar cells from adult rd mouse, currents induced by glutamate were absent. Two types of GABA mediated currents were isolated in rod bipolar cells both in control and rd mouse retinas. The currents mediated by GABA(C) receptors were observed exclusively at the axon terminal, while the currents mediated by the GABA(A) receptors were observed upon GABA application to the bipolar cell dendrites. The currents mediated by GABA(A) receptors in rod bipolar cells from rd mouse were larger than those from control animals. We conclude that after the degeneration of rod photoreceptors in rd mouse, rod bipolar cells lost their glutamate (rod-neurotransmitter) input while they increase their response to GABA (horizontal cell-neurotransmitter). In our opinion, this work describes for the first time the changes in neurotransmitter sensitivity that affect rod bipolar cells after photoreceptor degeneration of the mouse retina.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0042-6989(02)00493-5 | DOI Listing |
J Physiol
January 2025
Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA.
Bipolar cells are vertebrate retinal interneurons conveying signals from rod and cone photoreceptors to amacrine and ganglion cells. Bipolar cells are found in all vertebrates and have many structural and molecular affinities with photoreceptors; they probably appeared very early during vertebrate evolution in conjunction with rod and cone progenitors. There are two types of bipolar cells, responding to central illumination with depolarization (ON) or hyperpolarization (OFF).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Physics, Indian Institute of Technology, Patna, 801106, Bihar, India.
A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour.
View Article and Find Full Text PDFFunction (Oxf)
December 2024
Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Korea.
During retinal visual processing, rod bipolar cells (RBC) transfer scotopic signals from rods to AII amacrine cells as second-order neurons. Elucidation of the RBC's excitation/inhibition is essential for understanding the visual signal transmission. Excitation mechanisms via mGluR6 and voltage-gated Ca2+ channels in the RBCs and GABAergic inhibitory synaptic inputs have been studied in previous studies.
View Article and Find Full Text PDFFront Med (Lausanne)
November 2024
Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States.
Micromachines (Basel)
October 2024
National Key Laboratory of Nuclear Reactor Technology, Nuclear Power Institute of China, Chengdu 610213, China.
The Insulated Gate Bipolar Transistor (IGBT) is the key power device in the rod control power cabinet of nuclear power plants; its reliable operation is of great significance for ensuring the safe and economical operation of the nuclear power plants. Therefore, it is necessary to conduct fault prediction research on IGBT to achieve better condition-based maintenance and improve its operational reliability. However, power cabinets often operate under multiple, complex working conditions, so predicting IGBT faults from single working condition data usually has limitations and low accuracy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!