Triplex forming oligonucleotides (TFO) provide a promising tool for gene therapy. DNA damaging agents have been successfully coupled to TFOs and induce site-directed DNA damages. Here, we attempted to apply this antigen strategy using a TFO incorporated with a Conversion-electron-emitter, (99m)technetium, to target bcl-2 gene, the prototypical inhibitor of apoptosis. In the bcl-2 promoter region, we found two TFO binding sites which bind corresponding TFOs with very high specificity and affinity. Both partially and completely phosphorothioated TFOs form stable triplexes and significantly inhibit gene transcription in vitro. We also found that purine motif TFO with a thymidine opposite a thymidine interruption at the polypurine strand can form a stable triplex. In addition, (99m)technetium-conjugated TFOs were found to form a stable triplex and to inhibit bcl-2 gene transcription in vitro. Our results suggest a promising application of this triplex-forming oligonucleotide based Conversion-electron-emitter mediated gene radiotherapy in diseases related to bcl-2 overexpression.

Download full-text PDF

Source
http://dx.doi.org/10.1089/108497803321269296DOI Listing

Publication Analysis

Top Keywords

form stable
12
bcl-2 gene
8
tfos form
8
gene transcription
8
transcription vitro
8
stable triplex
8
gene
5
targeting bcl-2
4
bcl-2 triplex-forming
4
triplex-forming oligonucleotide--a
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!