Rationale for the use of dopamine agonists as neuroprotective agents in Parkinson's disease.

Ann Neurol

University Department of Clinical Neurosciences, Royal Free and University College Medical School, UCL, Queen Square, London, United Kingdom.

Published: April 2003

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.10514DOI Listing

Publication Analysis

Top Keywords

rationale dopamine
4
dopamine agonists
4
agonists neuroprotective
4
neuroprotective agents
4
agents parkinson's
4
parkinson's disease
4
rationale
1
agonists
1
neuroprotective
1
agents
1

Similar Publications

Rationale And Objectives: In vivo receptor interactions vary as a function of behavioral endpoint, with key differences between reflexive and non-reflexive measures that assess the motivational aspects of pain and pain relief. There have been no assessments of D dopamine agonist / mu opioid receptor (MOR) agonist interactions in non-reflexive behavioral measures of pain. We examined the hypothesis that D/MOR mixtures show enhanced effectiveness in blocking pain depressed behaviors while showing decreased side effects such as sedation and drug reward.

View Article and Find Full Text PDF

Background: In the last few decades, it has been emphasized that dopamine, a well-known neurotransmitter with multiple roles in central nervous system, is also implicated in the activity of peripheral tissues and organs, more specifically influencing the gastrointestinal system (GI).

Methods: We registered a protocol under the CRD42024547935 identifier in the Prospero register of systematic reviews. Furthermore, using the Population, Intervention, Comparison, Outcome, and Study Design strategy to guide our study rationale, and under the Preferred Reporting Items for Systematic reviews and Meta-Analyses recommendations, we conducted a qualitative systematic literature search based on the PubMed, Scopus, and Web of Science databases using the "gastric cancers AND dopamine" search criteria.

View Article and Find Full Text PDF

Liangxue Tongyu Prescription exerts neuroprotection by regulating the microbiota-gut-brain axis of rats with acute intracerebral hemorrhage.

Brain Res Bull

January 2025

School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China. Electronic address:

Liangxue Tongyu Prescription (LTP) is a classic herbal formula for treating acute intracerebral hemorrhage (AICH) in China. Previous studies have shown that LTP significantly ameliorates neurological impairments and gastrointestinal dysfunction in patients with AICH. However, the underlying molecular mechanism remains unclear.

View Article and Find Full Text PDF

Reduced sensitivity to cocaine effects and changes in mesocorticolimbic dopamine receptors in adolescent sexually active female rats.

Psychopharmacology (Berl)

December 2024

Evolutionary Genetics Department, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.

Rationale: The sexual behavior of the female rat is highly motivated, and the mesocorticolimbic dopaminergic system -involved in psychostimulants effects- has been implicated in its regulation. Female rats begin to express sexual behavior during adolescence, a period during which this system is not yet mature.

Objective: To examine the impact of cocaine on sexual motivation and behavior of adolescent and adult female rats, and to determine the dopamine receptors binding in mesocorticolimbic areas of these females.

View Article and Find Full Text PDF

Functional pathology of neuroleptic-induced dystonia based on the striatal striosome-matrix dopamine system in humans.

J Neurol Neurosurg Psychiatry

January 2025

Research Organization of Science and Technology, Ritsumeikan University, Kyoto, Japan

Neuroleptic-induced dystonia is a source of great concern in clinical practice because of its iatrogenic nature which can potentially lead to life-threatening conditions. Since all neuroleptics (antipsychotics) share the ability to block the dopamine D-type receptors (DRs) that are highly enriched in the striatum, this drug-induced dystonia is thought to be caused by decreased striatal DR activity. However, how associations of striatal DR inactivation with dystonia are formed remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!