The purpose of this study was to determine the impact of high-intensity intermittent exercise on the presence of circulating growth hormone (GH) aggregates measured using two different assay techniques. Six male subjects with endurance training background participated in this study under both exercise and no-exercise control conditions. After resting blood sampling, subjects completed an intermittent treadmill exercise protocol at four speeds predicted to elicit a specific VO(2):60% VO(2max) for 10 min, 75% for 10 min, 90% for 5 min, and 100% for 2 min. After each exercise intensity was completed treadmill speed was reduced to a walk (3.5-4 min) for blood sampling. Sampling continued every 15 min for 1 h into recovery. All samples were then measured for GH concentrations using Nichols immunoradiometric assay (IRMA) and Diagnostic Systems Laboratory's immunofunctional assay (IFA). A second set of samples was chemically reduced using reduced glutathione (GSH; 10 mM for 18 h at room temperature) to break disulfide bonds between possible oligomeric GH complexes, and subsequently assayed using the same GH assays. With the IRMA, GH was significantly elevated ( P<0.05) after the 75% workload and remained elevated through 30 min post-exercise. After adding GSH to the sample, the IRMA indicated significant increases in GH as early as the 60% exercise intensity and remained elevated through 45 min into recovery. At 75%, the GSH assay run was significantly higher than the non-GSH assay run. With the IFA, GH was significantly elevated at 60% in the non-GSH condition, whereas the GSH assay run indicated significant elevations at 75%. Both GSH and non-GSH conditions remained elevated through 30 min into recovery. These data indicate that the addition of GSH to serum samples prior to assay via an IRMA may break existing disulfide bonds between aggregated GH molecules, thus altering the apparent assay signal to reveal greater total GH in the sample.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00421-002-0774-2DOI Listing

Publication Analysis

Top Keywords

growth hormone
8
hormone aggregates
8
intermittent exercise
8
blood sampling
8
min
6
exercise
5
responses growth
4
aggregates intermittent
4
exercise intensities
4
intensities purpose
4

Similar Publications

Sucrose synthase gene family in common bean during pod filling subjected to moisture restriction.

Front Plant Sci

December 2024

Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Veracruz, Mexico.

In common bean ( L.), leaf photosynthesis is significantly reduced under drought conditions. Previous studies have shown that some drought-tolerant cultivars use the pod walls to compensate the decreased photosynthesis rate in leaves by acting as temporary reservoirs of carbohydrates to support seed filling.

View Article and Find Full Text PDF

Rice ( L.) is a staple food for more than half of the world's population, but its yields are increasingly threatened by environmental problems, including soil compaction. This problem limits root growth which limits water and nutrient foraging capacity thus reduces productivity due to, restricted diffusion of ethylene, a key plant hormone playing an important role in exacerbating these effects.

View Article and Find Full Text PDF

Insulin-like growth factor 2 (IGF2) is a mitogenic peptide hormone expressed by various tissues. Although it is three times more abundant in serum than IGF1, its physiological and pathological roles are yet to be fully understood. Previous transcriptome sequencing studies have shown that IGF2 expression is increased in hypertrophic scar (HS); however, its role in HS formation and the underlying mechanism remains elusive.

View Article and Find Full Text PDF

Yes-associated protein 1 is essential for maintaining lactation via regulating mammary epithelial cell dynamics and secretion capacity.

Int J Biol Macromol

December 2024

Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518038, China; National Center for International Research on Animal Genetics, Breeding and Reproduction, Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

Understanding the physiology and molecular mechanisms of lactogenesis is crucial for enhancing mammalian milk production. Yes-associated protein 1 (YAP1) regulated mammary epithelial cell survival during pregnancy, but its role in lactation maintenance remains unclear. We found that YAP1 was highly expressed in mammary gland across specie, with elevated expression levels during murine gestation and lactation, particularly localized in alveoli epithelial cells.

View Article and Find Full Text PDF

Histone deacetylases synergistically regulate juvenile hormone signaling in the yellow fever mosquito, Aedes aegypti.

Insect Biochem Mol Biol

December 2024

Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky 40546, USA. Electronic address:

Controlling Aedes aegypti mosquitoes is crucial for managing mosquito-transmitted diseases like dengue, zika, chikungunya, and yellow fever. One of the efficient methods to control mosquitoes is to block their progression from the larval to the adult stage. Juvenile hormones (JH) maintain the larval stage and ensure proper developmental timing for transitioning from larval-pupal-adult stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!